BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10708581)

  • 1. The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues.
    Ruiz FH; Silva E; Inestrosa NC
    Biochem Biophys Res Commun; 2000 Mar; 269(2):491-5. PubMed ID: 10708581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper reduction by the octapeptide repeat region of prion protein: pH dependence and implications in cellular copper uptake.
    Miura T; Sasaki S; Toyama A; Takeuchi H
    Biochemistry; 2005 Jun; 44(24):8712-20. PubMed ID: 15952778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A human prion protein peptide (PrP(59-91)) protects against copper neurotoxicity.
    Chacón MA; Barría MI; Lorca R; Huidobro-Toro JP; Inestrosa NC
    Mol Psychiatry; 2003 Oct; 8(10):853-62, 835. PubMed ID: 14515136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and stability of the CuII complexes with tandem repeats of the chicken prion.
    Stanczak P; Valensin D; Juszczyk P; Grzonka Z; Migliorini C; Molteni E; Valensin G; Gaggelli E; Kozlowski H
    Biochemistry; 2005 Oct; 44(39):12940-54. PubMed ID: 16185063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper binding and conformation of the N-terminal octarepeats of the prion protein in the presence of DPC micelles as membrane mimetic.
    Dong SL; Cadamuro SA; Fiorino F; Bertsch U; Moroder L; Renner C
    Biopolymers; 2007; 88(6):840-7. PubMed ID: 17922496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper binding to the N-terminal tandem repeat regions of mammalian and avian prion protein.
    Hornshaw MP; McDermott JR; Candy JM
    Biochem Biophys Res Commun; 1995 Feb; 207(2):621-9. PubMed ID: 7864852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation.
    Moore RA; Herzog C; Errett J; Kocisko DA; Arnold KM; Hayes SF; Priola SA
    Protein Sci; 2006 Mar; 15(3):609-19. PubMed ID: 16452616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chicken prion tandem repeats form a stable, protease-resistant domain.
    Marcotte EM; Eisenberg D
    Biochemistry; 1999 Jan; 38(2):667-76. PubMed ID: 9888807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XAFS study of the high-affinity copper-binding site of human PrP(91-231) and its low-resolution structure in solution.
    Hasnain SS; Murphy LM; Strange RW; Grossmann JG; Clarke AR; Jackson GS; Collinge J
    J Mol Biol; 2001 Aug; 311(3):467-73. PubMed ID: 11493001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The copper(II) adduct of the unstructured region of the amyloidogenic fragment derived from the human prion protein is redox-active at physiological pH.
    Shearer J; Soh P
    Inorg Chem; 2007 Feb; 46(3):710-9. PubMed ID: 17257012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper binding to chicken and human prion protein amylodogenic regions: differences and similarities revealed by Ni2+ as a diamagnetic probe.
    Valensin D; Gajda K; Gralka E; Valensin G; Kamysz W; Kozlowski H
    J Inorg Biochem; 2010 Jan; 104(1):71-8. PubMed ID: 19883942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper and zinc promote interactions between membrane-anchored peptides of the metal binding domain of the prion protein.
    Kenward AG; Bartolotti LJ; Burns CS
    Biochemistry; 2007 Apr; 46(14):4261-71. PubMed ID: 17371047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can copper binding to the prion protein generate a misfolded form of the protein?
    Pushie MJ; Rauk A; Jirik FR; Vogel HJ
    Biometals; 2009 Feb; 22(1):159-75. PubMed ID: 19140013
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The octarepeat region of prion protein, but not the TM1 domain, is important for the antioxidant effect of prion protein.
    Malaisé M; Schätzl HM; Bürkle A
    Free Radic Biol Med; 2008 Dec; 45(12):1622-30. PubMed ID: 18824094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper-dependent degradation of recombinant ovine prion protein. Phosphatidylinositol stimulates aggregation and copper-driven disappearance of prion protein.
    Tsiroulnikov K; Chobert JM; Haertlé T
    FEBS J; 2006 May; 273(9):1959-65. PubMed ID: 16640559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper binding to the N-terminal tandem repeat region of mammalian and avian prion protein: structural studies using synthetic peptides.
    Hornshaw MP; McDermott JR; Candy JM; Lakey JH
    Biochem Biophys Res Commun; 1995 Sep; 214(3):993-9. PubMed ID: 7575574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micellar environments induce structuring of the N-terminal tail of the prion protein.
    Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L
    Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A potential mechanism for Cu2+ reduction, beta-cleavage, and beta-sheet initiation within the N-terminal domain of the prion protein: insights from density functional theory and molecular dynamics calculations.
    Pushie MJ; Vogel HJ
    J Toxicol Environ Health A; 2009; 72(17-18):1040-59. PubMed ID: 19697239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Yin-Yang role for metals in prion disease.
    Wong BS; Brown DR; Sy MS
    Panminerva Med; 2001 Dec; 43(4):283-7. PubMed ID: 11677424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic and voltammetric characterization of the metal binding to the prion protein: insights into pH dependence and redox chemistry.
    Davies P; Marken F; Salter S; Brown DR
    Biochemistry; 2009 Mar; 48(12):2610-9. PubMed ID: 19196019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.