These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10708639)

  • 1. The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection.
    Hanke W; Brücker C; Bleckmann H
    J Exp Biol; 2000 Apr; 203(Pt 7):1193-200. PubMed ID: 10708639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interactive effects of exercise and gill remodeling in goldfish (Carassius auratus).
    Perry SF; Fletcher C; Bailey S; Ting J; Bradshaw J; Tzaneva V; Gilmour KM
    J Comp Physiol B; 2012 Oct; 182(7):935-45. PubMed ID: 22588580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavioral discrimination of water motions caused by moving objects.
    Vogel D; Bleckmann H
    J Comp Physiol A; 2000-2001; 186(12):1107-17. PubMed ID: 11288823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry.
    Hanke W; Bleckmann H
    J Exp Biol; 2004 Apr; 207(Pt 9):1585-96. PubMed ID: 15037652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kármán vortex street detection by the lateral line.
    Chagnaud BP; Bleckmann H; Hofmann MH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Jul; 193(7):753-63. PubMed ID: 17503054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural responses of goldfish lateral line afferents to vortex motions.
    Chagnaud BP; Bleckmann H; Engelmann J
    J Exp Biol; 2006 Jan; 209(Pt 2):327-42. PubMed ID: 16391355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitivity of central units in the goldfish, Carassius auratus, to transient hydrodynamic stimuli.
    Mogdans J; Bleckmann H; Menger N
    Brain Behav Evol; 1997; 50(5):261-83. PubMed ID: 9360004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of caudal fin loss and regeneration on the swimming performance of three cyprinid fish species with different swimming capacities.
    Fu C; Cao ZD; Fu SJ
    J Exp Biol; 2013 Aug; 216(Pt 16):3164-74. PubMed ID: 23661776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of training on the swimming muscles of the goldfish (Carassius auratus).
    Davison W; Goldspink G
    J Exp Biol; 1978 Jun; 74():115-22. PubMed ID: 670869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of partial ablation of the cerebellum on sustained swimming in goldfish.
    Matsumoto N; Yoshida M; Uematsu K
    Brain Behav Evol; 2007; 70(2):105-14. PubMed ID: 17519524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfish Carassius auratus.
    Zottoli SJ; Freemer MM
    J Exp Biol; 2003 Sep; 206(Pt 17):3015-29. PubMed ID: 12878670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic study of freely swimming shark fish propulsion for marine vehicles using 2D particle image velocimetry.
    Babu MN; Mallikarjuna JM; Krishnankutty P
    Robotics Biomim; 2016; 3():3. PubMed ID: 27077022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray microanalysis of myotomal muscle in the sunbleak, Leucaspius delineatus (Heckel) and goldfish, Carassius auratus gibelio.
    Tylko G; Roomans G; Kilarski W
    Folia Biol (Krakow); 1999; 47(3-4):77-83. PubMed ID: 10754791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae).
    Nauen JC; Lauder GV
    J Exp Biol; 2002 Jun; 205(Pt 12):1709-24. PubMed ID: 12042330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses to dipole stimuli of anterior lateral line nerve fibres in goldfish, Carassius auratus, under still and running water conditions.
    Chagnaud BP; Hofmann MH; Mogdans J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Feb; 193(2):249-63. PubMed ID: 17075719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes.
    Fu C; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2013 Mar; 164(3):456-65. PubMed ID: 23269108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Representation of edges, head direction, and swimming kinematics in the brain of freely-navigating fish.
    Vinepinsky E; Cohen L; Perchik S; Ben-Shahar O; Donchin O; Segev R
    Sci Rep; 2020 Sep; 10(1):14762. PubMed ID: 32901058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
    Chagnaud BP; Bleckmann H; Hofmann MH
    Zoology (Jena); 2008; 111(3):204-17. PubMed ID: 18329260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Swimming in four goldfish Carassius auratus morphotypes: understanding functional design and performance employing artificially selected forms.
    Blake RW; Li J; Chan KH
    J Fish Biol; 2009 Aug; 75(3):591-617. PubMed ID: 20738559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.