These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 10708652)

  • 1. Structural adaptation to selective pressure for altered ligand specificity in the Pseudomonas aeruginosa amide receptor, amiC.
    O'Hara BP; Wilson SA; Lee AW; Roe SM; Siligardi G; Drew RE; Pearl LH
    Protein Eng; 2000 Feb; 13(2):129-32. PubMed ID: 10708652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of AmiC: the controller of transcription antitermination in the amidase operon of Pseudomonas aeruginosa.
    Pearl L; O'Hara B; Drew R; Wilson S
    EMBO J; 1994 Dec; 13(24):5810-7. PubMed ID: 7813419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steric hindrance regulation of the Pseudomonas aeruginosa amidase operon.
    Norman RA; Poh CL; Pearl LH; O'Hara BP; Drew RE
    J Biol Chem; 2000 Sep; 275(39):30660-7. PubMed ID: 10893220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligomerization of the amide sensor protein AmiC by x-ray and neutron scattering and molecular modeling.
    Chamberlain D; O'Hara BP; Wilson SA; Pearl LH; Perkins SJ
    Biochemistry; 1997 Jul; 36(26):8020-9. PubMed ID: 9201949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antitermination of amidase expression in Pseudomonas aeruginosa is controlled by a novel cytoplasmic amide-binding protein.
    Wilson SA; Wachira SJ; Drew RE; Jones D; Pearl LH
    EMBO J; 1993 Sep; 12(9):3637-42. PubMed ID: 8253087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization of and preliminary X-ray data for the negative regulator (AmiC) of the amidase operon of Pseudomonas aeruginosa.
    Wilson SA; Chayen NE; Hemmings AM; Drew RE; Pearl LH
    J Mol Biol; 1991 Dec; 222(4):869-71. PubMed ID: 1762155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning and DNA sequence of amiC, a new gene regulating expression of the Pseudomonas aeruginosa aliphatic amidase, and purification of the amiC product.
    Wilson S; Drew R
    J Bacteriol; 1991 Aug; 173(16):4914-21. PubMed ID: 1907262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription antitermination regulation of the Pseudomonas aeruginosa amidase operon.
    Wilson SA; Wachira SJ; Norman RA; Pearl LH; Drew RE
    EMBO J; 1996 Nov; 15(21):5907-16. PubMed ID: 8918468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure and induction mechanism of AmiC-AmiR: a ligand-regulated transcription antitermination complex.
    O'Hara BP; Norman RA; Wan PT; Roe SM; Barrett TE; Drew RE; Pearl LH
    EMBO J; 1999 Oct; 18(19):5175-86. PubMed ID: 10508151
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular basis of altered enzyme specificities in a family of mutant amidases from Pseudomonas aeruginosa.
    Paterson A; Clarke PH
    J Gen Microbiol; 1979 Sep; 114(1):75-85. PubMed ID: 118234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa.
    Zhang H; Gao ZQ; Su XD; Dong YH
    FEBS Lett; 2012 Sep; 586(19):3193-9. PubMed ID: 22750141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitutions of Thr-103-Ile and Trp-138-Gly in amidase from Pseudomonas aeruginosa are responsible for altered kinetic properties and enzyme instability.
    Karmali A; Pacheco R; Tata R; Brown P
    Mol Biotechnol; 2001 Mar; 17(3):201-12. PubMed ID: 11434308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of catabolite repression control mutants of Pseudomonas aeruginosa PAO.
    Wolff JA; MacGregor CH; Eisenberg RC; Phibbs PV
    J Bacteriol; 1991 Aug; 173(15):4700-6. PubMed ID: 1906870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation-Induced Population Shift in the MexR Conformational Ensemble Disengages DNA Binding: A Novel Mechanism for MarR Family Derepression.
    Anandapadamanaban M; Pilstål R; Andresen C; Trewhella J; Moche M; Wallner B; Sunnerhagen M
    Structure; 2016 Aug; 24(8):1311-1321. PubMed ID: 27427478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Butyramide-utilizing mutants of Pseudomonas aeruginosa 8602 which produce an amidase with altered substrate specificity.
    Brown JE; Brown PR; Clarke PH
    J Gen Microbiol; 1969 Aug; 57(2):273-85. PubMed ID: 4981920
    [No Abstract]   [Full Text] [Related]  

  • 16. Arg-188 and Trp-144 are implicated in the binding of urea and acetamide to the active site of the amidase from Pseudomonas aeruginosa.
    Tata R; Marsh P; Brown PR
    Biochim Biophys Acta; 1994 Mar; 1205(1):139-45. PubMed ID: 8142478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural origins for selectivity and specificity in an engineered bacterial repressor-inducer pair.
    Klieber MA; Scholz O; Lochner S; Gmeiner P; Hillen W; Muller YA
    FEBS J; 2009 Oct; 276(19):5610-21. PubMed ID: 19712110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of AmiC, a positive regulator in acetamidase operon of Mycobacterium smegmatis.
    Venkatesan A; Palaniyandi K; Narayanan S
    Cell Stress Chaperones; 2018 Jul; 23(4):539-550. PubMed ID: 29273966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of a variant of lac repressor with increased thermostability and decreased affinity for operator.
    Bell CE; Barry J; Matthews KS; Lewis M
    J Mol Biol; 2001 Oct; 313(1):99-109. PubMed ID: 11601849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of a thermophilic glucose binding protein reveals adaptations that interconvert mono and di-saccharide binding sites.
    Cuneo MJ; Changela A; Warren JJ; Beese LS; Hellinga HW
    J Mol Biol; 2006 Sep; 362(2):259-70. PubMed ID: 16904687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.