These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 10708764)
1. Voltage and substrate dependence of the inverse transport mode of the rabbit Na(+)/glucose cotransporter (SGLT1). Sauer GA; Nagel G; Koepsell H; Bamberg E; Hartung K FEBS Lett; 2000 Mar; 469(1):98-100. PubMed ID: 10708764 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of the reverse mode of the Na+/glucose cotransporter. Eskandari S; Wright EM; Loo DD J Membr Biol; 2005 Mar; 204(1):23-32. PubMed ID: 16007500 [TBL] [Abstract][Full Text] [Related]
3. Coupled sodium/glucose cotransport by SGLT1 requires a negative charge at position 454. Díez-Sampedro A; Loo DD; Wright EM; Zampighi GA; Hirayama BA Biochemistry; 2004 Oct; 43(41):13175-84. PubMed ID: 15476411 [TBL] [Abstract][Full Text] [Related]
4. The high affinity Na+/glucose cotransporter. Re-evaluation of function and distribution of expression. Lee WS; Kanai Y; Wells RG; Hediger MA J Biol Chem; 1994 Apr; 269(16):12032-9. PubMed ID: 8163506 [TBL] [Abstract][Full Text] [Related]
5. Kinetics of steady-state currents and charge movements associated with the rat Na+/glucose cotransporter. Panayotova-Heiermann M; Loo DD; Wright EM J Biol Chem; 1995 Nov; 270(45):27099-105. PubMed ID: 7592962 [TBL] [Abstract][Full Text] [Related]
6. Neutralization of conservative charged transmembrane residues in the Na+/glucose cotransporter SGLT1. Panayotova-Heiermann M; Loo DD; Lam JT; Wright EM Biochemistry; 1998 Jul; 37(29):10522-8. PubMed ID: 9671524 [TBL] [Abstract][Full Text] [Related]
7. Five transmembrane helices form the sugar pathway through the Na+/glucose cotransporter. Panayotova-Heiermann M; Eskandari S; Turk E; Zampighi GA; Wright EM J Biol Chem; 1997 Aug; 272(33):20324-7. PubMed ID: 9252334 [TBL] [Abstract][Full Text] [Related]
8. Cysteine scanning mutagenesis of the segment between putative transmembrane helices IV and V of the high affinity Na+/Glucose cotransporter SGLT1. Evidence that this region participates in the Na+ and voltage dependence of the transporter. Lo B; Silverman M J Biol Chem; 1998 Nov; 273(45):29341-51. PubMed ID: 9792634 [TBL] [Abstract][Full Text] [Related]
9. Cloning of a membrane-associated protein which modifies activity and properties of the Na(+)-D-glucose cotransporter. Veyhl M; Spangenberg J; Püschel B; Poppe R; Dekel C; Fritzsch G; Haase W; Koepsell H J Biol Chem; 1993 Nov; 268(33):25041-53. PubMed ID: 8227068 [TBL] [Abstract][Full Text] [Related]
10. Conformational dynamics of hSGLT1 during Na+/glucose cotransport. Loo DD; Hirayama BA; Karakossian MH; Meinild AK; Wright EM J Gen Physiol; 2006 Dec; 128(6):701-20. PubMed ID: 17130520 [TBL] [Abstract][Full Text] [Related]
11. Relationships between Na+/glucose cotransporter (SGLT1) currents and fluxes. Mackenzie B; Loo DD; Wright EM J Membr Biol; 1998 Mar; 162(2):101-6. PubMed ID: 9538503 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Na+/glucose cotransporter expression by protein kinases in Xenopus laevis oocytes. Hirsch JR; Loo DD; Wright EM J Biol Chem; 1996 Jun; 271(25):14740-6. PubMed ID: 8663046 [TBL] [Abstract][Full Text] [Related]
13. Electrogenic properties of the cloned Na+/glucose cotransporter: I. Voltage-clamp studies. Parent L; Supplisson S; Loo DD; Wright EM J Membr Biol; 1992 Jan; 125(1):49-62. PubMed ID: 1542106 [TBL] [Abstract][Full Text] [Related]
14. Kinetic and specificity differences between rat, human, and rabbit Na+-glucose cotransporters (SGLT-1). Hirayama BA; Lostao MP; Panayotova-Heiermann M; Loo DD; Turk E; Wright EM Am J Physiol; 1996 Jun; 270(6 Pt 1):G919-26. PubMed ID: 8764197 [TBL] [Abstract][Full Text] [Related]
15. Mapping the urea channel through the rabbit Na(+)-glucose cotransporter SGLT1. Panayotova-Heiermann M; Wright EM J Physiol; 2001 Sep; 535(Pt 2):419-25. PubMed ID: 11533134 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic determination of the Na+: glucose coupling ratio for the human SGLT1 cotransporter. Chen XZ; Coady MJ; Jackson F; Berteloot A; Lapointe JY Biophys J; 1995 Dec; 69(6):2405-14. PubMed ID: 8599647 [TBL] [Abstract][Full Text] [Related]
17. Regulation of Na+/glucose cotransporters. Wright EM; Hirsch JR; Loo DD; Zampighi GA J Exp Biol; 1997 Jan; 200(Pt 2):287-93. PubMed ID: 9050236 [TBL] [Abstract][Full Text] [Related]
18. The sugar specificity of Na+/glucose cotransporter from rat jejunum. Aoshima H; Yokoyama T; Tanizaki J; Izu H; Yamada M Biosci Biotechnol Biochem; 1997 Jun; 61(6):979-83. PubMed ID: 9214758 [TBL] [Abstract][Full Text] [Related]
19. Intestinal Na+/glucose cotransporter expressed in Xenopus oocytes is electrogenic. Umbach JA; Coady MJ; Wright EM Biophys J; 1990 Jun; 57(6):1217-24. PubMed ID: 1697483 [TBL] [Abstract][Full Text] [Related]
20. Sodium leak pathway and substrate binding order in the Na+-glucose cotransporter. Chen XZ; Coady MJ; Jalal F; Wallendorff B; Lapointe JY Biophys J; 1997 Nov; 73(5):2503-10. PubMed ID: 9370443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]