These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 10708777)

  • 1. Time-frequency analysis and filtering of kinematic signals with impacts using the Wigner function: accurate estimation of the second derivative.
    Giakas G; Stergioulas LK; Vourdas A
    J Biomech; 2000 May; 33(5):567-74. PubMed ID: 10708777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic algorithm for filtering kinematic signals with impacts in the Wigner representation.
    Georgakis A; Stergioulas LK; Giakas G
    Med Biol Eng Comput; 2002 Nov; 40(6):625-33. PubMed ID: 12507312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of the second derivative of kinematic impact signals using fractional fourier domain filtering.
    Georgakis A; Subramaniam SR
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):996-1004. PubMed ID: 19272899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtering of kinematic signals using the Hodrick-Prescott filter.
    Alonso FJ; Pintado P; Del Castillo JM
    J Appl Biomech; 2005 Aug; 21(3):271-85. PubMed ID: 16260847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical Ground Reaction Force Estimation From Benchmark Nonstationary Kinematic Data.
    Davis DJ; Challis JH
    J Appl Biomech; 2021 Jun; 37(3):272-276. PubMed ID: 33690167
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STFT-based denoising of biomechanical impact signals.
    Hon TK; Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4036-9. PubMed ID: 21097287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple filter circuit for denoising biomechanical impact signals.
    Subramaniam SR; Georgakis A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6938-41. PubMed ID: 19964461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantification of noisy MRS signals with the Pseudo-Wigner Distribution.
    Leclerc JH
    IEEE Trans Biomed Eng; 1994 Sep; 41(9):809-19. PubMed ID: 7959808
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic segment filtering procedure for processing non-stationary signals.
    Davis DJ; Challis JH
    J Biomech; 2020 Mar; 101():109619. PubMed ID: 31952818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of singular spectrum analysis to the smoothing of raw kinematic signals.
    Alonso FJ; Castillo JM; Pintado P
    J Biomech; 2005 May; 38(5):1085-92. PubMed ID: 15797590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet-based noise removal for biomechanical signals: a comparative study.
    Wachowiak MP; Rash GS; Quesada PM; Desoky AH
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):360-8. PubMed ID: 10743778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal digital filtering requires a different cut-off frequency strategy for the determination of the higher derivatives.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):851-5. PubMed ID: 9239572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of interference component in Wigner-Ville distribution for the signal with 1/f spectral characteristic.
    Chan HL; Lin JL; Huang HH; Wu CP
    IEEE Trans Biomed Eng; 1997 Sep; 44(9):903-7. PubMed ID: 9282483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Technique for the evaluation of derivatives from noisy biomechanical displacement data using a model-based bandwidth-selection procedure.
    D'Amico M; Ferrigno G
    Med Biol Eng Comput; 1990 Sep; 28(5):407-15. PubMed ID: 2277540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison between the more recent techniques for smoothing and derivative assessment in biomechanics.
    D'Amico M; Ferrigno G
    Med Biol Eng Comput; 1992 Mar; 30(2):193-204. PubMed ID: 1453785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of automatic filtering techniques applied to biomechanical walking data.
    Giakas G; Baltzopoulos V
    J Biomech; 1997 Aug; 30(8):847-50. PubMed ID: 9239571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet analysis of cardiac optical mapping data.
    Xiong F; Qi X; Nattel S; Comtois P
    Comput Biol Med; 2015 Oct; 65():243-55. PubMed ID: 26209111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extracting Time-Accurate Acceleration Vectors From Nontrivial Accelerometer Arrangements.
    Franck JA; Blume J; Crisco JJ; Franck C
    J Biomech Eng; 2015 Sep; 137(9):. PubMed ID: 26121526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The rule of 1s for padding kinematic data prior to digital filtering: influence of sampling and filter cutoff frequencies.
    Howarth SJ; Callaghan JP
    J Electromyogr Kinesiol; 2009 Oct; 19(5):875-81. PubMed ID: 18462952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of fractional lower order S transform time frequency filtering algorithm to machine fault diagnosis.
    Long J; Wang H; Zha D; Li P; Xie H; Mao L
    PLoS One; 2017; 12(4):e0175202. PubMed ID: 28406916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.