These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10709636)

  • 1. Hypolipidemic 3-thia fatty acids. Fatty acid oxidation and ketogenesis in rat liver under proliferation of mitochondria and peroxisomes.
    Berge RK; Madsen L; Vaagenes H
    Adv Exp Med Biol; 1999; 466():125-32. PubMed ID: 10709636
    [No Abstract]   [Full Text] [Related]  

  • 2. Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids.
    Totland GK; Madsen L; Klementsen B; Vaagenes H; Kryvi H; Frøyland L; Hexeberg S; Berge RK
    Biol Cell; 2000 Aug; 92(5):317-29. PubMed ID: 11071041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Docosahexaenoic and eicosapentaenoic acids are differently metabolized in rat liver during mitochondria and peroxisome proliferation.
    Madsen L; Frøyland L; Dyrøy E; Helland K; Berge RK
    J Lipid Res; 1998 Mar; 39(3):583-93. PubMed ID: 9548590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of endogenous lipid in gluconeogenesis and ketogenesis of perfused rat liver.
    Menahan LA; Wieland O
    Eur J Biochem; 1969 Jun; 9(2):182-8. PubMed ID: 5804496
    [No Abstract]   [Full Text] [Related]  

  • 5. Fatty acid and ketone metabolism.
    Bieber LL; Fiol CJ
    Circulation; 1985 Nov; 72(5 Pt 2):IV9-12. PubMed ID: 4053330
    [No Abstract]   [Full Text] [Related]  

  • 6. Peroxisomal-mitochondrial oxidation in a rodent model of obesity-associated insulin resistance.
    Noland RC; Woodlief TL; Whitfield BR; Manning SM; Evans JR; Dudek RW; Lust RM; Cortright RN
    Am J Physiol Endocrinol Metab; 2007 Oct; 293(4):E986-E1001. PubMed ID: 17638705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrion is the principal target for nutritional and pharmacological control of triglyceride metabolism.
    Frøyland L; Madsen L; Vaagenes H; Totland GK; Auwerx J; Kryvi H; Staels B; Berge RK
    J Lipid Res; 1997 Sep; 38(9):1851-8. PubMed ID: 9323594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In contrast with docosahexaenoic acid, eicosapentaenoic acid and hypolipidaemic derivatives decrease hepatic synthesis and secretion of triacylglycerol by decreased diacylglycerol acyltransferase activity and stimulation of fatty acid oxidation.
    Berge RK; Madsen L; Vaagenes H; Tronstad KJ; Göttlicher M; Rustan AC
    Biochem J; 1999 Oct; 343 Pt 1(Pt 1):191-7. PubMed ID: 10493929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inflammatory and noninflammatory stress on ketone bodies and free fatty acids in rats.
    Neufeld HA; Kaminski MV; Wannemacher RW
    Am J Clin Nutr; 1977 Aug; 30(8):1357-8. PubMed ID: 888788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Consequences of mitochondrial injury induced by pharmaceutical fatty acid oxidation inhibitors is characterized in human and rat liver slices.
    Vickers AE; Bentley P; Fisher RL
    Toxicol In Vitro; 2006 Oct; 20(7):1173-82. PubMed ID: 16545538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dietary sesamin and docosahexaenoic and eicosapentaenoic acids synergistically increase the gene expression of enzymes involved in hepatic peroxisomal fatty acid oxidation in rats.
    Arachchige PG; Takahashi Y; Ide T
    Metabolism; 2006 Mar; 55(3):381-90. PubMed ID: 16483883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EPA and DHA possess different metabolic properties.
    Madsen L; Dyrøy E; Berge R
    Adv Exp Med Biol; 1999; 466():315-20. PubMed ID: 10709658
    [No Abstract]   [Full Text] [Related]  

  • 13. Early effects on mitochondrial and peroxisomal beta-oxidation by the hypolipidemic 3-thia-fatty acids in rat livers.
    Asiedu DK; Skorve J; Willumsen N; Demoz A; Berge RK
    Biochim Biophys Acta; 1993 Feb; 1166(1):73-6. PubMed ID: 8431494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hypolipidemic peroxisome proliferating fatty acid induces polydispersity of rat liver mitochondria.
    Frøyland L; Helland K; Totland GK; Kryvi H; Berge RK
    Biol Cell; 1996; 87(1-2):105-12. PubMed ID: 9004492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some aspects of fatty acid oxidation and ketone body formation and utilization during development of the rat.
    Bailey E; Lockwood EA
    Enzyme; 1973; 15(1):239-53. PubMed ID: 4593961
    [No Abstract]   [Full Text] [Related]  

  • 16. Role of mitochondrial enhancement in maintaining hepatic energy charge level in endotoxin shock.
    Shimahara Y; Ozawa K; Ida T; Ukikusa M; Tobe T
    J Surg Res; 1982 Oct; 33(4):314-23. PubMed ID: 6214669
    [No Abstract]   [Full Text] [Related]  

  • 17. Fasting induces hepatic lipid accumulation by stimulating peroxisomal dicarboxylic acid oxidation.
    Zhang X; Gao T; Deng S; Shang L; Chen X; Chen K; Li P; Cui X; Zeng J
    J Biol Chem; 2021; 296():100622. PubMed ID: 33811861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The biochemistry of hypo- and hyperlipidemic fatty acid derivatives: metabolism and metabolic effects.
    Bremer J
    Prog Lipid Res; 2001 Jul; 40(4):231-68. PubMed ID: 11412891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The metabolic syndrome and the hepatic fatty acid drainage hypothesis.
    Berge RK; Tronstad KJ; Berge K; Rost TH; Wergedahl H; Gudbrandsen OA; Skorve J
    Biochimie; 2005 Jan; 87(1):15-20. PubMed ID: 15733731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A possible role for malonyl-CoA in the regulation of hepatic fatty acid oxidation and ketogenesis.
    McGarry JD; Mannaerts GP; Foster DW
    J Clin Invest; 1977 Jul; 60(1):265-70. PubMed ID: 874089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.