These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10709636)

  • 21. The opposing effects of nicotinic acid and dibutyryl cyclic adenosine 3',5'-monophosphate on ketogenes in isolated rat hepatocytes.
    Yeh YY
    J Nutr; 1979 Jan; 109(1):110-8. PubMed ID: 219170
    [No Abstract]   [Full Text] [Related]  

  • 22. Interrelationship between adipose tissue and liver: gluconeogenesis and ketogenesis.
    Weiss L; Löffler G
    Horm Metab Res; 1970; 2():Suppl 2:196-20. PubMed ID: 4949047
    [No Abstract]   [Full Text] [Related]  

  • 23. Metabolic effects of hypoglycemic sulfonylureas-VI. Effects of chlorpropamide and carbutamide on ketogenesis and on mitochondrial redox state in the isolated perfused rat liver.
    Debeer LJ; Mannaerts G; De Schepper PJ
    Biochem Pharmacol; 1975 May; 24(9):1035-41. PubMed ID: 168900
    [No Abstract]   [Full Text] [Related]  

  • 24. Morphologic effects of sulfur-substituted fatty acids on rat hepatocytes with special reference to proliferation of peroxisomes and mitochondria.
    Kryvi H; Aarsland A; Berge RK
    J Struct Biol; 1990 May; 103(3):257-65. PubMed ID: 2261310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual effects of calcium on the oxidation of fatty acids to ketone bodies in liver mitochondria.
    Ontko JA; Westbrook DJ
    Biochem Biophys Res Commun; 1983 Oct; 116(1):173-9. PubMed ID: 6639656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Eicosapentaenoic acid and sulphur substituted fatty acid analogues inhibit the proliferation of human breast cancer cells in culture.
    Abdi-Dezfuli F; Frøyland L; Thorsen T; Aakvaag A; Berge RK
    Breast Cancer Res Treat; 1997 Sep; 45(3):229-39. PubMed ID: 9386867
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of gluconeogenic substrates on ketogenesis in isolated rat hepatocytes. I. Effect of glycerol.
    Rosario P; Medina JM
    Rev Esp Fisiol; 1980 Dec; 36(4):439-4. PubMed ID: 7221165
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of ethanol on the metabolism of free fatty acids in isolated liver cells.
    Ontko JA
    J Lipid Res; 1973 Jan; 14(1):78-86. PubMed ID: 4349663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relative contribution of mitochondria and peroxisomes to overall fatty acid oxidation in isolated hypatocytes [proceedings].
    Thomas J; Debeer LJ; De Schepper PJ; Mannaerts GP
    Arch Int Physiol Biochim; 1979 May; 87(2):426-8. PubMed ID: 92968
    [No Abstract]   [Full Text] [Related]  

  • 30. Antidyslipaemic action and role of CoA in lipid metabolism of mitochondria and peroxisomes.
    Conte A; Palmieri L; Segnini D; Ronca G
    Int J Tissue React; 1991; 13(1):33-6. PubMed ID: 1889960
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction.
    Jun DW; Cho WK; Jun JH; Kwon HJ; Jang KS; Kim HJ; Jeon HJ; Lee KN; Lee HL; Lee OY; Yoon BC; Choi HS; Hahm JS; Lee MH
    Liver Int; 2011 Oct; 31(9):1315-24. PubMed ID: 22093454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of hepatic gluconeogenesis and fatty acid oxidation by pent-4-enoic acid.
    Ruderman NB; Toews CJ; Lowy C; Vreeland I; Shafrir E
    Am J Physiol; 1970 Jul; 219(1):51-7. PubMed ID: 5424858
    [No Abstract]   [Full Text] [Related]  

  • 33. 2-Bromooctanoate.
    Raaka BM; Lowenstein JM
    Methods Enzymol; 1981; 72():559-77. PubMed ID: 7031427
    [No Abstract]   [Full Text] [Related]  

  • 34. The role of fatty acid binding protein on the metabolism of fatty acids in isolated rat hepatocytes.
    Wu-Rideout MY; Elson C; Shrago E
    Biochem Biophys Res Commun; 1976 Aug; 71(3):809-16. PubMed ID: 962957
    [No Abstract]   [Full Text] [Related]  

  • 35. [Effects of ethyl eicosapentaenoate (EPA-E) and its metabolite on the drug and fatty acid metabolizing enzyme systems in rat liver].
    Ishiguro J; Tada T; Ogihara T; Ida K; Ohzawa N; Kosuzume H; Aizawa N
    Yakugaku Zasshi; 1988 Mar; 108(3):239-45. PubMed ID: 2841446
    [No Abstract]   [Full Text] [Related]  

  • 36. Ketogenesis in mitochondria isolated from liver biopsies of normal and starved dogs: comparison with rat-liver mitochondria.
    de Bruijne JJ; Lopes-Cardozo M
    Comp Biochem Physiol B; 1983; 75(4):557-62. PubMed ID: 6617155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic effects of 3-thia fatty acid in cancer cells.
    Tronstad KJ; Berge K; Bjerkvig R; Flatmark T; Berge RK
    Adv Exp Med Biol; 1999; 466():201-4. PubMed ID: 10709645
    [No Abstract]   [Full Text] [Related]  

  • 38. Coordinate control of intermediary metabolism in rat liver by the insulin/glucagon ratio during starvation and after glucose refeeding. Regulatory significance of long-chain acyl-CoA and cyclic AMP.
    Seitz HJ; Müller MJ; Krone W; Tarnowski W
    Arch Biochem Biophys; 1977 Oct; 183(2):647-63. PubMed ID: 200176
    [No Abstract]   [Full Text] [Related]  

  • 39. Ketogenesis and its regulation.
    McGarry JD; Foster DW
    Am J Med; 1976 Jul; 61(1):9-13. PubMed ID: 937374
    [No Abstract]   [Full Text] [Related]  

  • 40. Eicosapentaenoic acid as an adjuvant to dieting strategies that disinhibit hepatic fatty acid oxidation.
    McCarty MF
    Med Hypotheses; 1998 Jan; 50(1):37-8. PubMed ID: 9488179
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.