These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 10709800)

  • 1. Designs for testing lack of fit for a nonlinear dose-response curve model.
    Lupinacci PJ; Raghavarao D
    J Biopharm Stat; 2000 Feb; 10(1):45-53. PubMed ID: 10709800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple-objective designs in a dose-response experiment.
    Zhu W; Wong WK
    J Biopharm Stat; 2000 Feb; 10(1):1-14. PubMed ID: 10709797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal plus one point designs for testing lack of fit for some sigmoid curve models.
    Su Y; Raghavarao D
    J Biopharm Stat; 2013 Mar; 23(2):281-93. PubMed ID: 23437939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved designs for dose escalation studies using pharmacokinetic measurements.
    Piantadosi S; Liu G
    Stat Med; 1996 Aug; 15(15):1605-18. PubMed ID: 8858785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determining the error of dose estimates and minimum and maximum acceptable concentrations from assays with nonlinear dose-response curves.
    Gottschalk PG; Dunn JR
    Comput Methods Programs Biomed; 2005 Dec; 80(3):204-15. PubMed ID: 16256244
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal designs for the individual and joint exposure general logistic regression models.
    Antonello JM; Raghavarao D
    J Biopharm Stat; 2000 Aug; 10(3):351-67. PubMed ID: 10959916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypothesis testing and Bayesian estimation using a sigmoid Emax model applied to sparse dose-response designs.
    Thomas N
    J Biopharm Stat; 2006; 16(5):657-77. PubMed ID: 17037264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal design criteria for discrimination and estimation in nonlinear models.
    Waterhouse TH; Eccleston JA; Duffull SB
    J Biopharm Stat; 2009; 19(2):386-402. PubMed ID: 19212887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of two design optimality criteria applied to a nonlinear model.
    Bogacka B; Wright F
    J Biopharm Stat; 2004 Nov; 14(4):909-30. PubMed ID: 15587972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of the chronic animal bioassay.
    Portier C; Hoel D
    J Toxicol Environ Health; 1983 Jul; 12(1):1-19. PubMed ID: 6631999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equivalence testing for parallelism in the four-parameter logistic model.
    Jonkman JN; Sidik K
    J Biopharm Stat; 2009 Sep; 19(5):818-37. PubMed ID: 20183446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal designs for estimating the interesting part of a dose-effect curve.
    Miller F; Guilbaud O; Dette H
    J Biopharm Stat; 2007; 17(6):1097-115. PubMed ID: 18027219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal adaptive design in clinical drug development: a simulation example.
    Maloney A; Karlsson MO; Simonsson US
    J Clin Pharmacol; 2007 Oct; 47(10):1231-43. PubMed ID: 17906158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel dose-response curves in combination experiments.
    Sühnel J
    Bull Math Biol; 1998 Mar; 60(2):197-213. PubMed ID: 9559575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A parametric model for detecting hormetic effects in developmental toxicity studies.
    Hunt DL; Bowman D
    Risk Anal; 2004 Feb; 24(1):65-72. PubMed ID: 15028001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of incomplete knowledge of parameter values on single- and multiple-stage designs for logistic regression.
    Spears FM; Brown BW; Atkinson EN
    Biometrics; 1997 Mar; 53(1):1-10. PubMed ID: 9147586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of the four-parameter logistic model to bioassay: comparison with slope ratio and parallel line models.
    Vølund A
    Biometrics; 1978 Sep; 34(3):357-65. PubMed ID: 719119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal design of mixed-effects PK/PD models based on differential equations.
    Wang Y; Eskridge KM; Nadarajah S
    J Biopharm Stat; 2012; 22(1):180-205. PubMed ID: 22204534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the concentration-response function of the herbicide dinoseb on Daphnia magna (survival time, reproduction) and Pseudokirchneriella subcapitata (growth rate).
    Chèvre N; Brazzale AR; Becker-van Slooten K; Behra R; Tarradellas J; Guettinger H
    Ecotoxicol Environ Saf; 2005 Sep; 62(1):17-25. PubMed ID: 15978287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.