BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10709987)

  • 1. Reactions of pentachlorophenol with laccase from Coriolus versicolor.
    Ullah MA; Bedford CT; Evans CS
    Appl Microbiol Biotechnol; 2000 Feb; 53(2):230-4. PubMed ID: 10709987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymerization of pentachlorophenol and ferulic acid by fungal extracellular lignin-degrading enzymes.
    Rüttimann-Johnson C; Lamar RT
    Appl Environ Microbiol; 1996 Oct; 62(10):3890-3. PubMed ID: 8967777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents.
    Ullah MA; Kadhim H; Rastall RA; Evans CS
    Appl Microbiol Biotechnol; 2000 Dec; 54(6):832-7. PubMed ID: 11152077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laccase-immobilized on superparamagnetic iron oxide nanoparticles incorporated polymeric ultrafiltration membrane for the removal of toxic pentachlorophenol.
    George J; K Alanazi A; Senthil Kumar P; Venkataraman S; Rajendran DS; Athilakshmi JK; Singh I; Singh I; Sen P; Purushothaman M; Balakumaran PA; Vaidyanathan VK; M Abo-Dief H
    Chemosphere; 2023 Aug; 331():138734. PubMed ID: 37088205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi.
    Walter M; Boul L; Chong R; Ford C
    J Environ Manage; 2004 Jul; 71(4):361-9. PubMed ID: 15217724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a thermostable
    Coelho GD; Ballaminut N; Thomaz DV; Gomes Machado KM
    Prep Biochem Biotechnol; 2019; 49(9):908-915. PubMed ID: 31271327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of magnetically recyclable porous cross-linked aggregates of Tramates versicolor MTCC 138 laccase for the efficient removal of pentachlorophenol from aqueous solution.
    Venkataraman S; Vaidyanathan VK
    Environ Res; 2023 Jul; 229():115899. PubMed ID: 37076027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification and characterization of laccase from Chaetomium thermophilium and its role in humification.
    Chefetz B; Chen Y; Hadar Y
    Appl Environ Microbiol; 1998 Sep; 64(9):3175-9. PubMed ID: 9726856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of a laccase in the degradation of pentachlorophenol.
    Ricotta A; Unz RF; Bollag J
    Bull Environ Contam Toxicol; 1996 Oct; 57(4):560-7. PubMed ID: 8694873
    [No Abstract]   [Full Text] [Related]  

  • 10. Novel enzymatic oxidation of Mn2+ to Mn3+ catalyzed by a fungal laccase.
    Höfer C; Schlosser D
    FEBS Lett; 1999 May; 451(2):186-90. PubMed ID: 10371162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2.
    Xiao YZ; Tu XM; Wang J; Zhang M; Cheng Q; Zeng WY; Shi YY
    Appl Microbiol Biotechnol; 2003 Feb; 60(6):700-7. PubMed ID: 12664149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and process parameter optimization of Brevibacterium casei for simultaneous bioremediation of hexavalent chromium and pentachlorophenol.
    Verma T; Singh N
    J Basic Microbiol; 2013 Mar; 53(3):277-90. PubMed ID: 22733606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of pentachlorophenol and 2,4-dichlorophenol by sequential visible-light driven photocatalysis and laccase catalysis.
    Yin L; Shen Z; Niu J; Chen J; Duan Y
    Environ Sci Technol; 2010 Dec; 44(23):9117-22. PubMed ID: 21049990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenolic substrates for fluorometric detection of laccase activity.
    Lonergan G; Mew E; Schliephake K; Baker WL
    FEMS Microbiol Lett; 1997 Aug; 153(2):485-90. PubMed ID: 9271877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of environmental parameters on pentachlorophenol biotransformation in soil by Lentinula edodes and Phanerochaete chrysosporium.
    Okeke BC; Smith JE; Paterson A; Watson-Craik IA
    Appl Microbiol Biotechnol; 1996 Mar; 45(1-2):263-6. PubMed ID: 8920199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Conversion of polychlorophenols by laccases with 1-hydroxybenzotriazole as a mediator].
    Lisov AV; Pozhidaeva ZA; Stepanova ; Koroleva OV; Leont'evskiĭ AA
    Prikl Biokhim Mikrobiol; 2007; 43(6):691-4. PubMed ID: 18173112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrocatalytic treatment of pentachlorophenol in aqueous solution using a rutile nanotube-like TiO2/Ti electrode.
    Yang S; Quan X; Li X; Sun C
    Photochem Photobiol Sci; 2006 Sep; 5(9):808-14. PubMed ID: 17047832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater by a biocatalytic/biosurfactant system comprising cross-linked laccase aggregates and rhamnolipid.
    Vaidyanathan VK; Kumar PS; Singh I; Singh I; Rangasamy G; Saratale RG; Saratale GD
    Environ Pollut; 2023 Jul; 329():121635. PubMed ID: 37085105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of pentachlorophenol in soil: the response to physical, chemical, and biological treatments.
    Seech AG; Trevors JT; Bulman TL
    Can J Microbiol; 1991 Jun; 37(6):440-4. PubMed ID: 1913347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants.
    Thirumavalavan M
    Int J Biol Macromol; 2023 Jul; 243():125276. PubMed ID: 37301344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.