These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10709989)

  • 21. Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen.
    Hudak AJ; Cassidy DP
    Biotechnol Bioeng; 2004 Dec; 88(7):861-8. PubMed ID: 15538720
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aerobic dechlorination of low-chlorinated biphenyls by bacterial biofilms in packed-bed batch bioreactors.
    Fava F; Di Gioia D; Marchetti L; Quattroni G
    Appl Microbiol Biotechnol; 1996 May; 45(4):562-8. PubMed ID: 8785040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Organic carbon effects on aerobic polychlorinated biphenyl removal and bacterial community composition in soils and sediments.
    Luo W; D'Angelo EM; Coyne MS
    Chemosphere; 2008 Jan; 70(3):364-73. PubMed ID: 17870145
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development.
    Qin H; Brookes PC; Xu J
    Environ Pollut; 2014 Jan; 184():306-12. PubMed ID: 24077568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum.
    Xu L; Teng Y; Li ZG; Norton JM; Luo YM
    Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms.
    Evans BS; Dudley CA; Klasson KT
    Appl Biochem Biotechnol; 1996; 57-58():885-94. PubMed ID: 8669923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of RAMEB and/or mechanical mixing on the bioavailability and biodegradation of PCBs in soil/slurry.
    Hu J; Wang Y; Su X; Yu C; Qin Z; Wang H; Hashmi MZ; Shi J; Shen C
    Chemosphere; 2016 Jul; 155():479-487. PubMed ID: 27145422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry].
    Yang K; Yao XY; Chen C; Shen CF; Qin ZH; Huang RL
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3083-90. PubMed ID: 26995917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains.
    Egorova DO; Demakov VA; Plotnikova EG
    J Hazard Mater; 2013 Oct; 261():378-86. PubMed ID: 23973470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of PCB-degrading bacteria: physiological aspects.
    Pazlarová J; Demnerová K; Macková M; Burkhard J
    Lett Appl Microbiol; 1997 May; 24(5):334-6. PubMed ID: 9229481
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Degradation of PCB congeners by bacterial strains.
    Rein A; Fernqvist MM; Mayer P; Trapp S; Bittens M; Karlson UG
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):469-81. PubMed ID: 17885752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs).
    Leigh MB; Pellizari VH; Uhlík O; Sutka R; Rodrigues J; Ostrom NE; Zhou J; Tiedje JM
    ISME J; 2007 Jun; 1(2):134-48. PubMed ID: 18043623
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced degradation of bioremediation residues in petroleum-contaminated soil using a two-liquid-phase bioslurry reactor.
    Lu M; Zhang Z; Sun S; Wang Q; Zhong W
    Chemosphere; 2009 Sep; 77(2):161-8. PubMed ID: 19709718
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remediation of polychlorinated biphenyl-contaminated soil by using a combination of ryegrass, arbuscular mycorrhizal fungi and earthworms.
    Lu YF; Lu M; Peng F; Wan Y; Liao MH
    Chemosphere; 2014 Jul; 106():44-50. PubMed ID: 24457052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor.
    Collina E; Bestetti G; Di Gennaro P; Franzetti A; Gugliersi F; Lasagni M; Pitea D
    Environ Int; 2005 Feb; 31(2):167-71. PubMed ID: 15661278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).
    Fava F; Berselli S; Conte P; Piccolo A; Marchetti L
    Biotechnol Bioeng; 2004 Oct; 88(2):214-23. PubMed ID: 15449300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biodegradation of polychlorinated biphenyls using biofilm grown with biphenyl as carbon source in fluidized bed reactor.
    Borja JQ; Auresenia JL; Gallardo SM
    Chemosphere; 2006 Jul; 64(4):555-9. PubMed ID: 16406484
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of di-n-butyl phthalate (DnBP) in bioaugmented bioslurry phase reactor.
    Shailaja S; Ramakrishna M; Venkata Mohan S; Sarma PN
    Bioresour Technol; 2007 May; 98(8):1561-6. PubMed ID: 16935494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Decontamination of wastewater contaminated by polychlorinated biphenyls (PCBs).
    Kastánek F; Kastánek P; Demnerová K; Maléterová Y
    Water Sci Technol; 2004; 50(2):131-8. PubMed ID: 15344783
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls.
    Sylvestre M
    Environ Microbiol; 2013 Mar; 15(3):907-15. PubMed ID: 23106850
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.