BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10712464)

  • 1. Firing properties and electrotonic structure of Xenopus larval spinal neurons.
    Saint Mleux B; Moore LE
    J Neurophysiol; 2000 Mar; 83(3):1366-80. PubMed ID: 10712464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active dendritic membrane properties of Xenopus larval spinal neurons analyzed with a whole cell soma voltage clamp.
    Saint Mleux B; Moore LE
    J Neurophysiol; 2000 Mar; 83(3):1381-93. PubMed ID: 10712465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional distribution of three types of Na+ channel on soma and processes of dorsal horn neurones of rat spinal cord.
    Safronov BV; Wolff M; Vogel W
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):371-85. PubMed ID: 9306279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of voltage-dependent potassium channels to the somatic shunt in neck motoneurons of the cat.
    Campbell DM; Rose PK
    J Neurophysiol; 1997 Mar; 77(3):1470-86. PubMed ID: 9084612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis of electrotonic structure and membrane properties of NMDA-activated lamprey spinal neurons.
    Murphey CR; Moore LE; Buchanan JT
    Neural Comput; 1995 May; 7(3):486-506. PubMed ID: 8935961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of action potentials in the dendrites of neurons from rat spinal cord slice cultures.
    Larkum ME; Rioult MG; Lüscher HR
    J Neurophysiol; 1996 Jan; 75(1):154-70. PubMed ID: 8822549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structure of motoneurons in spinal cord slice cultures: a comparison of compartmental and equivalent cylinder models.
    Ulrich D; Quadroni R; Lüscher HR
    J Neurophysiol; 1994 Aug; 72(2):861-71. PubMed ID: 7983541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region.
    Savić N; Pedarzani P; Sciancalepore M
    J Neurophysiol; 2001 May; 85(5):1986-97. PubMed ID: 11353015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrotonic structure of motoneurons in the spinal cord of the turtle: inferences for the mechanisms of bistability.
    Svirskis G; Gutman A; Hounsgaard J
    J Neurophysiol; 2001 Jan; 85(1):391-8. PubMed ID: 11152739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium channels in Xenopus spinal neurons differ in somas and presynaptic terminals.
    Li W; Thaler C; Brehm P
    J Neurophysiol; 2001 Jul; 86(1):269-79. PubMed ID: 11431508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons.
    Moore LE; Chub N; Tabak J; O'Donovan M
    J Neurosci; 1999 Oct; 19(19):8271-80. PubMed ID: 10493728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-clamp frequency domain analysis of NMDA-activated neurons.
    Moore LE; Hill RH; Grillner S
    J Exp Biol; 1993 Feb; 175():59-87. PubMed ID: 8440974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dendritic voltage-gated ion channels regulate the action potential firing mode of hippocampal CA1 pyramidal neurons.
    Magee JC; Carruth M
    J Neurophysiol; 1999 Oct; 82(4):1895-901. PubMed ID: 10515978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compartmental model of vertebrate motoneurons for Ca2+-dependent spiking and plateau potentials under pharmacological treatment.
    Booth V; Rinzel J; Kiehn O
    J Neurophysiol; 1997 Dec; 78(6):3371-85. PubMed ID: 9405551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of lamprey reticulospinal neurons: multiple distinct parameter sets yield realistic simulations.
    Ruffolo JA; McClellan AD
    J Neurophysiol; 2020 Sep; 124(3):895-913. PubMed ID: 32697608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tuberal supraoptic neurons--II. Electrotonic properties.
    Armstrong WE; Smith BN
    Neuroscience; 1990; 38(2):485-94. PubMed ID: 2263322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin AT(1)-receptors depolarize neonatal spinal motoneurons and other ventral horn neurons via two different conductances.
    Oz M; Renaud LP
    J Neurophysiol; 2002 Nov; 88(5):2857-63. PubMed ID: 12424318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrotonic architecture of type-identified alpha-motoneurons in the cat spinal cord.
    Fleshman JW; Segev I; Burke RB
    J Neurophysiol; 1988 Jul; 60(1):60-85. PubMed ID: 3404225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents.
    Winlove CI; Roberts A
    Eur J Neurosci; 2012 Oct; 36(7):2926-40. PubMed ID: 22775205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.