BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10712522)

  • 1. Polarized sphingolipid transport from the subapical compartment changes during cell polarity development.
    van IJzendoorn SC; Hoekstra D
    Mol Biol Cell; 2000 Mar; 11(3):1093-101. PubMed ID: 10712522
    [TBL] [Abstract][Full Text] [Related]  

  • 2. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids.
    van IJzendoorn SC; Hoekstra D
    J Cell Biol; 1998 Aug; 142(3):683-96. PubMed ID: 9700158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells.
    van IJzendoorn SC; Zegers MM; Kok JW; Hoekstra D
    J Cell Biol; 1997 Apr; 137(2):347-57. PubMed ID: 9128247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polarized sphingolipid transport from the subapical compartment: evidence for distinct sphingolipid domains.
    van IJzendoorn SC; Hoekstra D
    Mol Biol Cell; 1999 Oct; 10(10):3449-61. PubMed ID: 10512879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells.
    Zegers MM; Hoekstra D
    J Cell Biol; 1997 Jul; 138(2):307-21. PubMed ID: 9230073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calmodulin modulates hepatic membrane polarity by protein kinase C-sensitive steps in the basolateral endocytic pathway.
    Tyteca D; van Ijzendoorn SC; Hoekstra D
    Exp Cell Res; 2005 Nov; 310(2):293-302. PubMed ID: 16154564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vesicular and nonvesicular transport of phosphatidylcholine in polarized HepG2 cells.
    Wüstner D; Mukherjee S; Maxfield FR; Müller P; Herrmann A
    Traffic; 2001 Apr; 2(4):277-96. PubMed ID: 11285138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids.
    Maier O; Hoekstra D
    J Biol Chem; 2003 Jan; 278(1):164-73. PubMed ID: 12407103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarized membrane traffic and cell polarity development is dependent on dihydroceramide synthase-regulated sphinganine turnover.
    Van IJzendoorn SC; Van Der Wouden JM; Liebisch G; Schmitz G; Hoekstra D
    Mol Biol Cell; 2004 Sep; 15(9):4115-24. PubMed ID: 15229289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient trafficking of MDR1/P-glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA-RIIalpha anchoring and glucosylceramide.
    Wojtal KA; de Vries E; Hoekstra D; van Ijzendoorn SC
    Mol Biol Cell; 2006 Aug; 17(8):3638-50. PubMed ID: 16723498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential targeting of glucosylceramide and galactosylceramide analogues after synthesis but not during transcytosis in Madin-Darby canine kidney cells.
    van Genderen I; van Meer G
    J Cell Biol; 1995 Nov; 131(3):645-54. PubMed ID: 7593186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells.
    Zegers MM; Zaal KJ; van IJzendoorn SC; Klappe K; Hoekstra D
    Mol Biol Cell; 1998 Jul; 9(7):1939-49. PubMed ID: 9658181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent, short-chain C6-NBD-sphingomyelin, but not C6-NBD-glucosylceramide, is subject to extensive degradation in the plasma membrane: implications for signal transduction related to cell differentiation.
    Kok JW; Babia T; Klappe K; Hoekstra D
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):905-12. PubMed ID: 7639709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells.
    Nyasae LK; Hubbard AL; Tuma PL
    Mol Biol Cell; 2003 Jul; 14(7):2689-705. PubMed ID: 12857857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane domains and polarized trafficking of sphingolipids.
    Maier O; Aït Slimane T; Hoekstra D
    Semin Cell Dev Biol; 2001 Apr; 12(2):149-61. PubMed ID: 11292381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane flow, lipid sorting and cell polarity in HepG2 cells: role of a subapical compartment.
    Hoekstra D; Zegers MM; van Ijzendoorn SC
    Biochem Soc Trans; 1999 Aug; 27(4):422-8. PubMed ID: 10917614
    [No Abstract]   [Full Text] [Related]  

  • 17. Quantification of polarized trafficking of transferrin and comparison with bulk membrane transport in hepatic cells.
    Wüstner D
    Biochem J; 2006 Dec; 400(2):267-80. PubMed ID: 16879100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The subapical compartment: a traffic center in membrane polarity development.
    Hoekstra D; Tyteca D; van IJzendoorn SC
    J Cell Sci; 2004 May; 117(Pt 11):2183-92. PubMed ID: 15126620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential metabolism and trafficking of sphingolipids in differentiated versus undifferentiated HT29 cells.
    Babia T; Kok JW; Hulstaert C; de Weerd H; Hoekstra D
    Int J Cancer; 1993 Jul; 54(5):839-45. PubMed ID: 8325709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorting of newly synthesized galactosphingolipids to the two surface domains of epithelial cells.
    van der Bijl P; Lopes-Cardozo M; van Meer G
    J Cell Biol; 1996 Mar; 132(5):813-21. PubMed ID: 8603914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.