These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10712569)

  • 1. Arterio-venous differences of blood acid-base status and plasma sodium caused by intense bicycling.
    Medbø JI; Hanem S; Noddeland H; Jebens E
    Acta Physiol Scand; 2000 Feb; 168(2):311-26. PubMed ID: 10712569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lactate elimination and glycogen resynthesis after intense bicycling.
    Medbø JI; Jebens E; Noddeland H; Hanem S; Toska K
    Scand J Clin Lab Invest; 2006; 66(3):211-26. PubMed ID: 16714250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sprint training enhances ionic regulation during intense exercise in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):687-702. PubMed ID: 9218228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid-base and electrolyte balance after exhausting exercise in endurance-trained and sprint-trained subjects.
    Medbø JI; Sejersted OM
    Acta Physiol Scand; 1985 Sep; 125(1):97-109. PubMed ID: 4050490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactate release, concentration in blood, and apparent distribution volume after intense bicycling.
    Medbø JI; Toska K
    Jpn J Physiol; 2001 Jun; 51(3):303-12. PubMed ID: 11492954
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of short-term training on plasma acid-base balance during incremental exercise in man.
    Putman CT; Jones NL; Heigenhauser GJ
    J Physiol; 2003 Jul; 550(Pt 2):585-603. PubMed ID: 12766247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation between lactate and proton exchange in muscle during intense exercise in man.
    Bangsbo J; Juel C; Hellsten Y; Saltin B
    J Physiol; 1997 Oct; 504 ( Pt 2)(Pt 2):489-99. PubMed ID: 9365920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in arterial, mixed venous and intraerythrocytic concentrations of ions in supramaximally exercising horses.
    Bayly WM; Kingston JK; Brown JA; Keegan RD; Greene SA; Sides RH
    Equine Vet J Suppl; 2006 Aug; (36):294-7. PubMed ID: 17402435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of high-intensity intermittent training on lactate and H+ release from human skeletal muscle.
    Juel C; Klarskov C; Nielsen JJ; Krustrup P; Mohr M; Bangsbo J
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E245-51. PubMed ID: 14559724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise.
    Bangsbo J; Johansen L; Graham T; Saltin B
    J Physiol; 1993 Mar; 462():115-33. PubMed ID: 8331579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acid-base balance during repeated cycling sprints in boys and men.
    Ratel S; Duche P; Hennegrave A; Van Praagh E; Bedu M
    J Appl Physiol (1985); 2002 Feb; 92(2):479-85. PubMed ID: 11796654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg and arm lactate and substrate kinetics during exercise.
    Van Hall G; Jensen-Urstad M; Rosdahl H; Holmberg HC; Saltin B; Calbet JA
    Am J Physiol Endocrinol Metab; 2003 Jan; 284(1):E193-205. PubMed ID: 12388120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lactate and potassium fluxes from human skeletal muscle during and after intense, dynamic, knee extensor exercise.
    Juel C; Bangsbo J; Graham T; Saltin B
    Acta Physiol Scand; 1990 Oct; 140(2):147-59. PubMed ID: 2125176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 2,3-DPG levels of human red blood cells during an incremental exercise test: relationship to the blood acid-base balance.
    Spodaryk K; Zoladz JA
    Physiol Res; 1998; 47(1):17-22. PubMed ID: 9708696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inspiratory loading intensity does not influence lactate clearance during recovery.
    Johnson MA; Mills DE; Brown DM; Bayfield KJ; Gonzalez JT; Sharpe GR
    Med Sci Sports Exerc; 2012 May; 44(5):863-71. PubMed ID: 22089476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes of differences in exercise-induced changes of base excess and blood lactate.
    Böning D; Klarholz C; Himmelsbach B; Hütler M; Maassen N
    Eur J Appl Physiol; 2007 Jan; 99(2):163-71. PubMed ID: 17115177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hematological and acid-base changes in men during prolonged exercise with and without sodium-lactate infusion.
    Miller BF; Lindinger MI; Fattor JA; Jacobs KA; Leblanc PJ; Duong M; Heigenhauser GJ; Brooks GA
    J Appl Physiol (1985); 2005 Mar; 98(3):856-65. PubMed ID: 15475600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. pH buffering does not influence BDNF responses to exercise.
    Rojas Vega S; Hollmann W; Vera Wahrmann B; Strüder HK
    Int J Sports Med; 2012 Jan; 33(1):8-12. PubMed ID: 22127561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative analysis of acid-base balance in show jumpers before and after exercise.
    Aguilera-Tejero E; Estepa JC; López I; Bas S; Mayer-Valor R; Rodríguez M
    Res Vet Sci; 2000 Apr; 68(2):103-8. PubMed ID: 10756125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unmeasured anions in critically ill patients: can they predict mortality?
    Rocktaeschel J; Morimatsu H; Uchino S; Bellomo R
    Crit Care Med; 2003 Aug; 31(8):2131-6. PubMed ID: 12973170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.