BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10712731)

  • 1. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioartificial kidney. I. Theoretical analysis of convective flow in hollow fiber modules: application to a bioartificial hemofilter.
    Moussy Y
    Biotechnol Bioeng; 2000 Apr; 68(2):142-52. PubMed ID: 10712730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells.
    Ozgen N; Terashima M; Aung T; Sato Y; Isoe C; Kakuta T; Saito A
    Nephrol Dial Transplant; 2004 Sep; 19(9):2198-207. PubMed ID: 15266032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The performance of primary human renal cells in hollow fiber bioreactors for bioartificial kidneys.
    Oo ZY; Deng R; Hu M; Ni M; Kandasamy K; bin Ibrahim MS; Ying JY; Zink D
    Biomaterials; 2011 Dec; 32(34):8806-15. PubMed ID: 21872923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model of oxygen transport limitations in hollow fiber bioreactors.
    Piret JM; Cooney CL
    Biotechnol Bioeng; 1991 Jan; 37(1):80-92. PubMed ID: 18597310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients.
    Saito A; Aung T; Sekiguchi K; Sato Y
    Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a bioartificial liver: properties and function of a hollow-fiber module inoculated with liver cells.
    Rozga J; Williams F; Ro MS; Neuzil DF; Giorgio TD; Backfisch G; Moscioni AD; Hakim R; Demetriou AA
    Hepatology; 1993 Feb; 17(2):258-65. PubMed ID: 8428723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of oxygen carrier mediated oxygen transport to C3A hepatoma cells housed within a hollow fiber bioreactor.
    Sullivan JP; Gordon JE; Palmer AF
    Biotechnol Bioeng; 2006 Feb; 93(2):306-17. PubMed ID: 16161160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell therapy with a tissue-engineered kidney reduces the multiple-organ consequences of septic shock.
    Humes HD; Buffington DA; Lou L; Abrishami S; Wang M; Xia J; Fissell WH
    Crit Care Med; 2003 Oct; 31(10):2421-8. PubMed ID: 14530746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Application of tissue engineering in bioartificial renal tubule].
    Zhang Y; Zhang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jan; 19(1):144-7. PubMed ID: 11951504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and performance study of a novel immobilized hollow fiber membrane bioreactor.
    Yang P; Teo WK; Ting YP
    Bioresour Technol; 2006 Jan; 97(1):39-46. PubMed ID: 16154501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced oxygen delivery to primary hepatocytes within a hollow fiber bioreactor facilitated via hemoglobin-based oxygen carriers.
    Sullivan JP; Gordon JE; Bou-Akl T; Matthew HW; Palmer AF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(6):585-606. PubMed ID: 18097786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convective flow through a hollow fiber bioartificial liver.
    Moussy Y
    Artif Organs; 2003 Nov; 27(11):1041-9. PubMed ID: 14616523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemoglobin-based oxygen carrier and convection enhanced oxygen transport in a hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Bioeng; 2009 Apr; 102(6):1603-12. PubMed ID: 19072844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of membrane materials and membrane coatings for bioreactor units of bioartificial kidneys.
    Ni M; Teo JC; Ibrahim MS; Zhang K; Tasnim F; Chow PY; Zink D; Ying JY
    Biomaterials; 2011 Feb; 32(6):1465-76. PubMed ID: 21145586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue engineering of a bioartificial renal tubule.
    MacKay SM; Funke AJ; Buffington DA; Humes HD
    ASAIO J; 1998; 44(3):179-83. PubMed ID: 9617948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human hepatocyte functions in a crossed hollow fiber membrane bioreactor.
    De Bartolo L; Salerno S; Curcio E; Piscioneri A; Rende M; Morelli S; Tasselli F; Bader A; Drioli E
    Biomaterials; 2009 May; 30(13):2531-43. PubMed ID: 19185912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical analysis of the effect of convective flow on solute transport and insulin release in a hollow fiber bioartificial pancreas.
    Pillarella MR; Zydney AL
    J Biomech Eng; 1990 May; 112(2):220-8. PubMed ID: 2189042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perfluorocarbon facilitated O(2) transport in a hepatic hollow fiber bioreactor.
    Chen G; Palmer AF
    Biotechnol Prog; 2009; 25(5):1317-21. PubMed ID: 19565662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen consumption in a hollow fiber bioartificial liver--revisited.
    Patzer JF
    Artif Organs; 2004 Jan; 28(1):83-98. PubMed ID: 14720293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.