These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10712731)

  • 21. Radial flow bioreactor for the creation of bioartificial liver and kidney.
    Iwahori T; Matsuno N; Johjima Y; Konno O; Akashi I; Nakamura Y; Hama K; Iwamoto H; Uchiyama M; Ashizawa T; Nagao T
    Transplant Proc; 2005; 37(1):212-4. PubMed ID: 15808597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological studies on the culture of kidney epithelial cells in a fiber-in-fiber bioreactor design with hollow fiber membranes.
    Fey-Lamprecht F; Albrecht W; Groth T; Weigel T; Gross U
    J Biomed Mater Res A; 2003 May; 65(2):144-57. PubMed ID: 12734806
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling O2 transport within engineered hepatic devices.
    McClelland RE; MacDonald JM; Coger RN
    Biotechnol Bioeng; 2003 Apr; 82(1):12-27. PubMed ID: 12569620
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Design of a hollow-fiber bioreactor and perfusion study in vitro].
    Shu G; Song J; Du Z; Li T; Zhang J; Cui R; Fu L; Lü W; Bi H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):166-9. PubMed ID: 16532833
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The SlideReactor--a simple hollow fiber based bioreactor suitable for light microscopy.
    Sauer IM; Schwartlander R; Schmid J; Efimova E; Vondran FW; Kehr D; Pless G; Spinelli A; Brandenburg B; Hildt E; Neuhaus P
    Artif Organs; 2005 Mar; 29(3):264-7. PubMed ID: 15725230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The future of renal support: high-flux dialysis to bioartificial kidneys.
    Tiranathanagul K; Eiam-Ong S; Humes HD
    Crit Care Clin; 2005 Apr; 21(2):379-94. PubMed ID: 15781170
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flow modeling in a novel non-perfusion conical bioreactor.
    Singh H; Ang ES; Lim TT; Hutmacher DW
    Biotechnol Bioeng; 2007 Aug; 97(5):1291-9. PubMed ID: 17216661
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prevention of LLC-PK(1) cell overgrowth in a bioartificial renal tubule device using a MEK inhibitor, U0126.
    Inagaki M; Yokoyama TA; Sawada K; Duc VM; Kanai G; Lu J; Kakuta T; Saito A
    J Biotechnol; 2007 Oct; 132(1):57-64. PubMed ID: 17884223
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioartificial kidney in the treatment of acute renal failure associated with sepsis.
    Tiranathanagul K; Brodie J; Humes HD
    Nephrology (Carlton); 2006 Aug; 11(4):285-91. PubMed ID: 16889566
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RWPV bioreactor mass transport: earth-based and in microgravity.
    Begley CM; Kleis SJ
    Biotechnol Bioeng; 2002 Nov; 80(4):465-76. PubMed ID: 12325155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hollow fiber bioreactor: new development for the study of contrast agent transport into hepatocytes by magnetic resonance imaging.
    Planchamp C; Ivancevic MK; Pastor CM; Vallée JP; Pochon S; Terrier F; Mayer JM; Reist M
    Biotechnol Bioeng; 2004 Mar; 85(6):656-65. PubMed ID: 14966807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of an erythropoietin-expressing bioartificial renal tubule assist device.
    Sun J; Wang C; Zhu B; Larsen S; Wu J; Zhao W
    Ren Fail; 2011; 33(1):54-60. PubMed ID: 21219206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design engineering of a bioartificial renal tubule cell therapy device.
    Nikolovski J; Gulari E; Humes HD
    Cell Transplant; 1999; 8(4):351-64. PubMed ID: 10478715
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing cell viability with pulsating flow in a hollow fiber bioartificial liver.
    Nguyen DT; Brotherton JD; Chau PC
    Biotechnol Lett; 2005 Oct; 27(19):1511-6. PubMed ID: 16231225
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of continuous implantable renal replacement: past and future.
    Fissell WH; Fleischman AJ; Humes HD; Roy S
    Transl Res; 2007 Dec; 150(6):327-36. PubMed ID: 18022594
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Progress in bioreactors of bioartificial livers.
    Yu CB; Pan XP; Li LJ
    Hepatobiliary Pancreat Dis Int; 2009 Apr; 8(2):134-40. PubMed ID: 19357025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeted oxygen delivery within hepatic hollow fiber bioreactors via supplementation of hemoglobin-based oxygen carriers.
    Sullivan JP; Palmer AF
    Biotechnol Prog; 2006; 22(5):1374-87. PubMed ID: 17022677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Perfusion circuit concepts for hollow-fiber bioreactors used as in vitro cell production systems or ex vivo bioartificial organs.
    Balmert SC; McKeel D; Triolo F; Gridelli B; Zeilinger K; Bornemann R; Gerlach JC
    Int J Artif Organs; 2011 May; 34(5):410-21. PubMed ID: 21623585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Construction and performance of a minibioreactor suitable as experimental bioartificial liver.
    Rodriguez JV; Pizarro MD; Scandizzi AL; Guibert EE; Almada LL; Mamprin ME
    Artif Organs; 2008 Apr; 32(4):323-8. PubMed ID: 18370948
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.