These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10712933)

  • 41. Crystal structure analysis of a serine proteinase from Streptomyces fradiae at 0.16-nm resolution and molecular modeling of an acidic-amino-acid-specific proteinase.
    Kitadokoro K; Tsuzuki H; Okamoto H; Sato T
    Eur J Biochem; 1994 Sep; 224(2):735-42. PubMed ID: 7925392
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The active centers of Streptomyces griseus protease 3, alpha-chymotrypsin, and elastase: enzyme-substrate interactions close to the scissile bond.
    Bauer CA; Thompson RC; Blout ER
    Biochemistry; 1976 Mar; 15(6):1296-9. PubMed ID: 814925
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The first semi-synthetic serine protease made by native chemical ligation.
    Pál G; Santamaria F; Kossiakoff AA; Lu W
    Protein Expr Purif; 2003 Jun; 29(2):185-92. PubMed ID: 12767808
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The primary structure of staphylococcal protease.
    Drapeau GR
    Can J Biochem; 1978 Jun; 56(6):534-44. PubMed ID: 96922
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A "moonlighting" dizinc aminopeptidase from Streptomyces griseus: mechanisms for peptide hydrolysis and the 4 x 10(10)-fold acceleration of the alternative phosphodiester hydrolysis.
    Ercan A; Park HI; Ming LJ
    Biochemistry; 2006 Nov; 45(46):13779-93. PubMed ID: 17105197
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The active centers of Streptomyces griseus protease 3 and alpha-chymotrypsin: enzyme-substrate interactions remote from the scissile bond.
    Bauer CA; Thompson RC; Blout ER
    Biochemistry; 1976 Mar; 15(6):1291-5. PubMed ID: 814924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interactions of Streptomyces serine-protease inhibitors with Streptomyces griseus metalloendopeptidase II.
    Kajiwara K; Fujita A; Tsuyuki H; Kumazaki T; Ishii S
    J Biochem; 1991 Sep; 110(3):350-4. PubMed ID: 1769961
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The role of Glu196 in the environment around the substrate binding site of leucine aminopeptidase from Streptomyces griseus.
    Arima J; Uesugi Y; Uraji M; Iwabuchi M; Hatanaka T
    FEBS Lett; 2006 Feb; 580(3):912-7. PubMed ID: 16427629
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles.
    Schellenberger V; Turck CW; Hedstrom L; Rutter WJ
    Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Rodent alpha-chymases are elastase-like proteases.
    Kunori Y; Koizumi M; Masegi T; Kasai H; Kawabata H; Yamazaki Y; Fukamizu A
    Eur J Biochem; 2002 Dec; 269(23):5921-30. PubMed ID: 12444981
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Study of gelatin hydrolysis by Streptomyces griseus protease using the method of N-terminal analysis].
    Tsykerovich AS; Kastrikina TF; Karpenko GF
    Ukr Biokhim Zh; 1976; 48(3):355-9. PubMed ID: 822552
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding of amino acid side chains to preformed cavities: interaction of serine proteinases with turkey ovomucoid third domains with coded and noncoded P1 residues.
    Bigler TL; Lu W; Park SJ; Tashiro M; Wieczorek M; Wynn R; Laskowski M
    Protein Sci; 1993 May; 2(5):786-99. PubMed ID: 8495199
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular cloning of the Lon protease gene from Thermus thermophilus HB8 and characterization of its gene product.
    Watanabe S; Muramatsu T; Ao H; Hirayama Y; Takahashi K; Tanokura M; Kuchino Y
    Eur J Biochem; 1999 Dec; 266(3):811-9. PubMed ID: 10583374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A structural model for the glutamate-specific endopeptidase from Streptomyces griseus that explains substrate specificity.
    Barbosa JA; Garratt RC; Saldanha JW
    FEBS Lett; 1993 Jun; 324(1):45-50. PubMed ID: 8504858
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution.
    Zhao HY; Feng H
    BMC Biotechnol; 2018 Jun; 18(1):34. PubMed ID: 29859069
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering the primary substrate specificity of Streptomyces griseus trypsin.
    Page MJ; Wong SL; Hewitt J; Strynadka NC; MacGillivray RT
    Biochemistry; 2003 Aug; 42(30):9060-6. PubMed ID: 12885239
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Rarobacter faecitabidus protease I, a yeast-lytic serine protease having mannose-binding activity.
    Shimoi H; Tadenuma M
    J Biochem; 1991 Oct; 110(4):608-13. PubMed ID: 1778983
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cleavage of peptide bonds bearing ionizable amino acids at P(1) by serine proteases with hydrophobic S(1) pocket.
    Qasim MA; Song J; Markley JL; Laskowski M
    Biochem Biophys Res Commun; 2010 Oct; 400(4):507-10. PubMed ID: 20800580
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Peptide thioester substrates for serine peptidases and metalloendopeptidases.
    Powers JC; Kam CM
    Methods Enzymol; 1995; 248():3-18. PubMed ID: 7674928
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kinetic and structural characterization of urease active site variants.
    Pearson MA; Park IS; Schaller RA; Michel LO; Karplus PA; Hausinger RP
    Biochemistry; 2000 Jul; 39(29):8575-84. PubMed ID: 10913264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.