These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 10712958)

  • 1. Phytoremediation of toxic elemental and organic pollutants.
    Meagher RB
    Curr Opin Plant Biol; 2000 Apr; 3(2):153-62. PubMed ID: 10712958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arabidopsis and the genetic potential for the phytoremediation of toxic elemental and organic pollutants.
    Cobbett CS; Meagher RB
    Arabidopsis Book; 2002; 1():e0032. PubMed ID: 22303204
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metals in plants and phytoremediation.
    Cheng S
    Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phytoremediation--a novel and promising approach for environmental clean-up.
    Suresh B; Ravishankar GA
    Crit Rev Biotechnol; 2004; 24(2-3):97-124. PubMed ID: 15493528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects of genetic engineering of plants for phytoremediation of toxic metals.
    Eapen S; D'Souza SF
    Biotechnol Adv; 2005 Mar; 23(2):97-114. PubMed ID: 15694122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for the engineered phytoremediation of toxic element pollution: mercury and arsenic.
    Meagher RB; Heaton AC
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):502-13. PubMed ID: 15995854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.
    Olaniran AO; Balgobind A; Pillay B
    Int J Mol Sci; 2013 May; 14(5):10197-228. PubMed ID: 23676353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation of toxic metals from soil and waste water.
    Hooda V
    J Environ Biol; 2007 Apr; 28(2 Suppl):367-76. PubMed ID: 17929752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils.
    Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN
    Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytoextraction of toxic metals: a review of biological mechanisms.
    Lasat MM
    J Environ Qual; 2002; 31(1):109-20. PubMed ID: 11837415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.
    Fasani E; Manara A; Martini F; Furini A; DalCorso G
    Plant Cell Environ; 2018 May; 41(5):1201-1232. PubMed ID: 28386947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of heavy metals--concepts and applications.
    Ali H; Khan E; Sajad MA
    Chemosphere; 2013 May; 91(7):869-81. PubMed ID: 23466085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytoremediation of toxic trace elements in soil and water.
    LeDuc DL; Terry N
    J Ind Microbiol Biotechnol; 2005 Dec; 32(11-12):514-20. PubMed ID: 15883830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential of saltmarsh halophytes for phytoremediation of metals and persistent organic pollutants: An Australian perspective.
    Roe RAL; MacFarlane GR
    Mar Pollut Bull; 2022 Jul; 180():113811. PubMed ID: 35667258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation: a technology using green plants to remove contaminants from polluted areas.
    Garbisu C; Hernández-Allica J; Barrutia O; Alkorta I; Becerril JM
    Rev Environ Health; 2002; 17(3):173-88. PubMed ID: 12462482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants.
    Salt DE; Blaylock M; Kumar NP; Dushenkov V; Ensley BD; Chet I; Raskin I
    Biotechnology (N Y); 1995 May; 13(5):468-74. PubMed ID: 9634787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of Pb, Cu, and Zn in native plants growing on contaminated sites and their potential accumulation capacity in Heqing, Yunnan.
    Liu X; Gao Y; Khan S; Duan G; Chen A; Ling L; Zhao L; Liu Z; Wu X
    J Environ Sci (China); 2008; 20(12):1469-74. PubMed ID: 19209634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation.
    Kamnev AA; van der Lelie D
    Biosci Rep; 2000 Aug; 20(4):239-58. PubMed ID: 11092247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.