These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 10713091)
1. Kinetic characterization of the ATPase cycle of the molecular chaperone Hsc66 from Escherichia coli. Silberg JJ; Vickery LE J Biol Chem; 2000 Mar; 275(11):7779-86. PubMed ID: 10713091 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of the reactions of the Escherichia coli molecular chaperone DnaK with ATP: evidence that a three-step reaction precedes ATP hydrolysis. Slepenkov SV; Witt SN Biochemistry; 1998 Jan; 37(4):1015-24. PubMed ID: 9454592 [TBL] [Abstract][Full Text] [Related]
3. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE. Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122 [TBL] [Abstract][Full Text] [Related]
4. The second step of ATP binding to DnaK induces peptide release. Theyssen H; Schuster HP; Packschies L; Bukau B; Reinstein J J Mol Biol; 1996 Nov; 263(5):657-70. PubMed ID: 8947566 [TBL] [Abstract][Full Text] [Related]
5. Kinetic characterization of the ATPase cycle of the DnaK molecular chaperone. Russell R; Jordan R; McMacken R Biochemistry; 1998 Jan; 37(2):596-607. PubMed ID: 9425082 [TBL] [Abstract][Full Text] [Related]
6. A two-site kinetic mechanism for ATP binding and hydrolysis by E. coli Rep helicase dimer bound to a single-stranded oligodeoxynucleotide. Hsieh J; Moore KJ; Lohman TM J Mol Biol; 1999 Apr; 288(2):255-74. PubMed ID: 10329141 [TBL] [Abstract][Full Text] [Related]
7. Regulation of the HscA ATPase reaction cycle by the co-chaperone HscB and the iron-sulfur cluster assembly protein IscU. Silberg JJ; Tapley TL; Hoff KG; Vickery LE J Biol Chem; 2004 Dec; 279(52):53924-31. PubMed ID: 15485839 [TBL] [Abstract][Full Text] [Related]
8. DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Russell R; Wali Karzai A; Mehl AF; McMacken R Biochemistry; 1999 Mar; 38(13):4165-76. PubMed ID: 10194333 [TBL] [Abstract][Full Text] [Related]
9. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-grpE system. Silberg JJ; Hoff KG; Vickery LE J Bacteriol; 1998 Dec; 180(24):6617-24. PubMed ID: 9852006 [TBL] [Abstract][Full Text] [Related]
10. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism. Packschies L; Theyssen H; Buchberger A; Bukau B; Goody RS; Reinstein J Biochemistry; 1997 Mar; 36(12):3417-22. PubMed ID: 9131990 [TBL] [Abstract][Full Text] [Related]
11. Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Vickery LE; Silberg JJ; Ta DT Protein Sci; 1997 May; 6(5):1047-56. PubMed ID: 9144776 [TBL] [Abstract][Full Text] [Related]
12. Interaction of the iron-sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Hoff KG; Silberg JJ; Vickery LE Proc Natl Acad Sci U S A; 2000 Jul; 97(14):7790-5. PubMed ID: 10869428 [TBL] [Abstract][Full Text] [Related]
13. The power stroke of the DnaK/DnaJ/GrpE molecular chaperone system. Pierpaoli EV; Sandmeier E; Baici A; Schönfeld HJ; Gisler S; Christen P J Mol Biol; 1997 Jun; 269(5):757-68. PubMed ID: 9223639 [TBL] [Abstract][Full Text] [Related]
14. Kinetic mechanism of adenine nucleotide binding to and hydrolysis by the Escherichia coli Rep monomer. 2. Application of a kinetic competition approach. Moore KJ; Lohman TM Biochemistry; 1994 Dec; 33(48):14565-78. PubMed ID: 7981218 [TBL] [Abstract][Full Text] [Related]
15. The Fe/S assembly protein IscU behaves as a substrate for the molecular chaperone Hsc66 from Escherichia coli. Silberg JJ; Hoff KG; Tapley TL; Vickery LE J Biol Chem; 2001 Jan; 276(3):1696-700. PubMed ID: 11053447 [TBL] [Abstract][Full Text] [Related]
16. Pre-steady-state kinetics of the microtubule-kinesin ATPase. Gilbert SP; Johnson KA Biochemistry; 1994 Feb; 33(7):1951-60. PubMed ID: 8110800 [TBL] [Abstract][Full Text] [Related]
17. Switches, catapults, and chaperones: steady-state kinetic analysis of Hsp70-substrate interactions. Chesnokova LS; Witt SN Biochemistry; 2005 Aug; 44(33):11224-33. PubMed ID: 16101306 [TBL] [Abstract][Full Text] [Related]
18. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. Ziegelhoffer T; Lopez-Buesa P; Craig EA J Biol Chem; 1995 May; 270(18):10412-9. PubMed ID: 7737974 [TBL] [Abstract][Full Text] [Related]
19. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state. Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175 [TBL] [Abstract][Full Text] [Related]
20. Control of the DnaK chaperone cycle by substoichiometric concentrations of the co-chaperones DnaJ and GrpE. Pierpaoli EV; Sandmeier E; Schönfeld HJ; Christen P J Biol Chem; 1998 Mar; 273(12):6643-9. PubMed ID: 9506960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]