BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

390 related articles for article (PubMed ID: 10713156)

  • 21. Molecular dissection of the interactions among IkappaBalpha, FWD1, and Skp1 required for ubiquitin-mediated proteolysis of IkappaBalpha.
    Hattori K; Hatakeyama S; Shirane M; Matsumoto M; Nakayama K
    J Biol Chem; 1999 Oct; 274(42):29641-7. PubMed ID: 10514433
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin.
    Kitagawa M; Hatakeyama S; Shirane M; Matsumoto M; Ishida N; Hattori K; Nakamichi I; Kikuchi A; Nakayama K; Nakayama K
    EMBO J; 1999 May; 18(9):2401-10. PubMed ID: 10228155
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha.
    Tan P; Fuchs SY; Chen A; Wu K; Gomez C; Ronai Z; Pan ZQ
    Mol Cell; 1999 Apr; 3(4):527-33. PubMed ID: 10230406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation.
    Semplici F; Meggio F; Pinna LA; Oliviero S
    Oncogene; 2002 Jun; 21(25):3978-87. PubMed ID: 12037680
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hint1 Up-Regulates IκBα by Targeting the β-TrCP Subunit of SCF E3 Ligase in Human Hepatocellular Carcinoma Cells.
    Shi Z; Wu X; Ke Y; Wang L
    Dig Dis Sci; 2016 Mar; 61(3):785-94. PubMed ID: 26520111
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha.
    Heissmeyer V; Krappmann D; Hatada EN; Scheidereit C
    Mol Cell Biol; 2001 Feb; 21(4):1024-35. PubMed ID: 11158290
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4.
    Kaiser P; Flick K; Wittenberg C; Reed SI
    Cell; 2000 Aug; 102(3):303-14. PubMed ID: 10975521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1).
    Morimoto M; Nishida T; Honda R; Yasuda H
    Biochem Biophys Res Commun; 2000 Apr; 270(3):1093-6. PubMed ID: 10772955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A snapshot of ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination.
    Kovacev J; Wu K; Spratt DE; Chong RA; Lee C; Nayak J; Shaw GS; Pan ZQ
    J Biol Chem; 2014 Mar; 289(10):7068-7081. PubMed ID: 24464578
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases.
    Liu J; Furukawa M; Matsumoto T; Xiong Y
    Mol Cell; 2002 Dec; 10(6):1511-8. PubMed ID: 12504025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanisms of ubiquitin-mediated, limited processing of the NF-kappaB1 precursor protein p105.
    Ciechanover A; Gonen H; Bercovich B; Cohen S; Fajerman I; Israël A; Mercurio F; Kahana C; Schwartz AL; Iwai K; Orian A
    Biochimie; 2001; 83(3-4):341-9. PubMed ID: 11295495
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro systems for NEDD8 conjugation by Ubc12.
    Chiba T
    Methods Enzymol; 2005; 398():68-73. PubMed ID: 16275320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The bacterial fermentation product butyrate influences epithelial signaling via reactive oxygen species-mediated changes in cullin-1 neddylation.
    Kumar A; Wu H; Collier-Hyams LS; Kwon YM; Hanson JM; Neish AS
    J Immunol; 2009 Jan; 182(1):538-46. PubMed ID: 19109186
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of Cullin-RING E3 ubiquitin ligase-dependent ubiquitination by small molecule compounds.
    Wu K; DeVita RJ; Pan ZQ
    J Biol Chem; 2024 Mar; 300(3):105752. PubMed ID: 38354780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homodimer of two F-box proteins betaTrCP1 or betaTrCP2 binds to IkappaBalpha for signal-dependent ubiquitination.
    Suzuki H; Chiba T; Suzuki T; Fujita T; Ikenoue T; Omata M; Furuichi K; Shikama H; Tanaka K
    J Biol Chem; 2000 Jan; 275(4):2877-84. PubMed ID: 10644755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway.
    Lisztwan J; Marti A; Sutterlüty H; Gstaiger M; Wirbelauer C; Krek W
    EMBO J; 1998 Jan; 17(2):368-83. PubMed ID: 9430629
    [TBL] [Abstract][Full Text] [Related]  

  • 37. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFbeta-TrCP.
    Watanabe N; Arai H; Nishihara Y; Taniguchi M; Watanabe N; Hunter T; Osada H
    Proc Natl Acad Sci U S A; 2004 Mar; 101(13):4419-24. PubMed ID: 15070733
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCF(betaTrCP) ubiquitin ligase.
    Lassot I; Ségéral E; Berlioz-Torrent C; Durand H; Groussin L; Hai T; Benarous R; Margottin-Goguet F
    Mol Cell Biol; 2001 Mar; 21(6):2192-202. PubMed ID: 11238952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. TIP120A associates with cullins and modulates ubiquitin ligase activity.
    Min KW; Hwang JW; Lee JS; Park Y; Tamura TA; Yoon JB
    J Biol Chem; 2003 May; 278(18):15905-10. PubMed ID: 12609982
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1.
    Furukawa M; Zhang Y; McCarville J; Ohta T; Xiong Y
    Mol Cell Biol; 2000 Nov; 20(21):8185-97. PubMed ID: 11027288
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.