These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10713494)

  • 21. Transduction and adaptation in sensory hair cells of the mammalian vestibular system.
    Colclasure JC; Holt JR
    Gravit Space Biol Bull; 2003 Jun; 16(2):61-70. PubMed ID: 12959133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A finite-element model of inner ear hair bundle micromechanics.
    Duncan RK; Grant JW
    Hear Res; 1997 Feb; 104(1-2):15-26. PubMed ID: 9119758
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous otoacoustic emissions from free-standing stereovillar bundles of ten species of lizard with small papillae.
    Manley GA
    Hear Res; 2006 Feb; 212(1-2):33-47. PubMed ID: 16307854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance.
    Ciganović N; Wolde-Kidan A; Reichenbach T
    Sci Rep; 2017 Jun; 7(1):3609. PubMed ID: 28620181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative transduction mechanisms of hair cells in the bullfrog utriculus. II. Sensitivity and response dynamics to hair bundle displacement.
    Baird RA
    J Neurophysiol; 1994 Feb; 71(2):685-705. PubMed ID: 7909841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of fluid forcing on vestibular hair bundles.
    Nam JH; Cotton JR; Grant JW
    J Vestib Res; 2005; 15(5-6):263-78. PubMed ID: 16614473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A model for the mechanics of the stereociliar bundle on acousticolateral hair cells.
    Pickles JO
    Hear Res; 1993 Aug; 68(2):159-72. PubMed ID: 8407602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acceleration detection by vestibular hair cells. Hair bundles as spatially distributed phased-array antennas.
    Mugler DH
    Ann N Y Acad Sci; 1992 May; 656():947-9. PubMed ID: 1599228
    [No Abstract]   [Full Text] [Related]  

  • 29. Quantitative anatomical basis for a model of micromechanical frequency tuning in the Tokay gecko, Gekko gecko.
    Köppl C; Authier S
    Hear Res; 1995 Jan; 82(1):14-25. PubMed ID: 7744709
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells.
    Beurg M; Nam JH; Crawford A; Fettiplace R
    Biophys J; 2008 Apr; 94(7):2639-53. PubMed ID: 18178649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superposition of hydrodynamic forces on a hair bundle.
    Freeman DM; Weiss TF
    Hear Res; 1990 Sep; 48(1-2):1-15. PubMed ID: 2249953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stages of degradation of timing information in the cochlea: a comparison of hair-cell and nerve-fiber responses in the alligator lizard.
    Weiss TF; Rose C
    Hear Res; 1988 May; 33(2):167-74. PubMed ID: 3397326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptor potentials of lizard hair cells with free-standing stereocilia: responses to acoustic clicks.
    Baden-Kristensen K; Weiss TF
    J Physiol; 1983 Feb; 335():699-721. PubMed ID: 6875897
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The diverse effects of mechanical loading on active hair bundles.
    Ó Maoiléidigh D; Nicola EM; Hudspeth AJ
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):1943-8. PubMed ID: 22308449
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular architecture of the chick vestibular hair bundle.
    Shin JB; Krey JF; Hassan A; Metlagel Z; Tauscher AN; Pagana JM; Sherman NE; Jeffery ED; Spinelli KJ; Zhao H; Wilmarth PA; Choi D; David LL; Auer M; Barr-Gillespie PG
    Nat Neurosci; 2013 Mar; 16(3):365-74. PubMed ID: 23334578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical conditions for high-frequency hair bundle oscillations in auditory hair cells.
    Nam JH; Fettiplace R
    Biophys J; 2008 Nov; 95(10):4948-62. PubMed ID: 18676646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receptor potentials of lizard cochlear hair cells with free-standing stereocilia in response to tones.
    Holton T; Weiss TF
    J Physiol; 1983 Dec; 345():205-40. PubMed ID: 6663499
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sound-induced motions of individual cochlear hair bundles.
    Aranyosi AJ; Freeman DM
    Biophys J; 2004 Nov; 87(5):3536-46. PubMed ID: 15315953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Otoacoustic emissions, hair cells, and myosin motors.
    Manley GA; Gallo L
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1049-55. PubMed ID: 9265753
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation of expression of the actin filament-bundling protein espin with stereociliary bundle formation in the developing inner ear.
    Li H; Liu H; Balt S; Mann S; Corrales CE; Heller S
    J Comp Neurol; 2004 Jan; 468(1):125-34. PubMed ID: 14648695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.