These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 10714265)
41. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats. Hurd C; Weishaupt N; Fouad K Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552 [TBL] [Abstract][Full Text] [Related]
42. Parvalbumin-containing neurons mediate the feedforward inhibition of rat rubrospinal neurons. Liu CL; Wang YJ; Chen JR; Tseng GF Anat Embryol (Berl); 2002 Jun; 205(3):245-54. PubMed ID: 12107495 [TBL] [Abstract][Full Text] [Related]
43. [Neuronal mechanisms of red nucleus interaction with brain stem structures]. Fanardzhian VV; Sarkisian DS Neirofiziologiia; 1984; 16(5):665-78. PubMed ID: 6096738 [TBL] [Abstract][Full Text] [Related]
44. [Relationship between graded spinal cord injury and rubrospinal MEPs in rats]. Shao XM; Xie Y; Yu F; Liu LM; Zhang MX Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2005 Feb; 21(1):58-62. PubMed ID: 21166166 [TBL] [Abstract][Full Text] [Related]
45. Forelimb motor performance following dorsal column, dorsolateral funiculi, or ventrolateral funiculi lesions of the cervical spinal cord in the rat. Schrimsher GW; Reier PJ Exp Neurol; 1993 Apr; 120(2):264-76. PubMed ID: 8491282 [TBL] [Abstract][Full Text] [Related]
46. Responses of the red nucleus neurons to limb stimulation after cerebellar lesions. Tarnecki R Cerebellum; 2003; 2(2):96-100. PubMed ID: 12880176 [TBL] [Abstract][Full Text] [Related]
47. Plasticity of motor network and function in the absence of corticospinal projection. Han Q; Cao C; Ding Y; So KF; Wu W; Qu Y; Zhou L Exp Neurol; 2015 May; 267():194-208. PubMed ID: 25792481 [TBL] [Abstract][Full Text] [Related]
48. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. Inman DM; Steward O J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811 [TBL] [Abstract][Full Text] [Related]
49. Training-induced plasticity in rats with cervical spinal cord injury: effects and side effects. Krajacic A; Weishaupt N; Girgis J; Tetzlaff W; Fouad K Behav Brain Res; 2010 Dec; 214(2):323-31. PubMed ID: 20573587 [TBL] [Abstract][Full Text] [Related]
50. Clusterin upregulation following rubrospinal tract lesion in the adult rat. Liu L; Svensson M; Aldskogius H Exp Neurol; 1999 May; 157(1):69-76. PubMed ID: 10222109 [TBL] [Abstract][Full Text] [Related]
51. Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature. Basso DM; Beattie MS; Bresnahan JC Restor Neurol Neurosci; 2002; 20(5):189-218. PubMed ID: 12515895 [TBL] [Abstract][Full Text] [Related]
52. [Compensatory rehabilitation processes and instrumental reflexes in rats after neurotoxic lesions in the inferior olive]. Fanardzhian VV; Oganesian EA; Melik-Musian AB; Papoian EB; Gevorkian OV Ross Fiziol Zh Im I M Sechenova; 1998 Aug; 84(8):719-27. PubMed ID: 9845888 [TBL] [Abstract][Full Text] [Related]
53. Fate of rubrospinal neurons after unilateral section of the cervical spinal cord in adult macaque monkeys: effects of an antibody treatment neutralizing Nogo-A. Wannier-Morino P; Schmidlin E; Freund P; Belhaj-Saif A; Bloch J; Mir A; Schwab ME; Rouiller EM; Wannier T Brain Res; 2008 Jun; 1217():96-109. PubMed ID: 18508036 [TBL] [Abstract][Full Text] [Related]
54. Evolution of the red nucleus and rubrospinal tract. ten Donkelaar HJ Behav Brain Res; 1988; 28(1-2):9-20. PubMed ID: 3289562 [TBL] [Abstract][Full Text] [Related]
55. The effect of rubrospinal tractotomy on a conditioned limb response in the cat. Voneida TJ Behav Brain Res; 1999 Nov; 105(2):151-62. PubMed ID: 10563489 [TBL] [Abstract][Full Text] [Related]
56. Elevated gene expression in the red nucleus after spinal cord compression injury. Theriault E; Tetzlaff W; Tator CH Neuroreport; 1992 Jul; 3(7):559-62. PubMed ID: 1421106 [TBL] [Abstract][Full Text] [Related]
57. Can the period of postnatal codevelopment of the rubrospinal and corticospinal systems provide new insights into refinement of limb movement? Bertucco M; Dayanidhi S J Neurophysiol; 2015 Feb; 113(3):681-3. PubMed ID: 24966297 [TBL] [Abstract][Full Text] [Related]
58. Compensatory restorative processes and operant reflexes in rats after neurotoxin lesioning of the inferior olive. Fanardzhyan VV; Oganesyan EA; Melik-Musyan AB; Papoyan EV; Govorkyan OV Neurosci Behav Physiol; 1999; 29(6):657-63. PubMed ID: 10651322 [TBL] [Abstract][Full Text] [Related]
59. Inferior olive destruction induces dysfacilitation of the red nucleus activity. Billard JM; Daniel H Brain Res; 1985 Jun; 336(2):372-5. PubMed ID: 4005596 [TBL] [Abstract][Full Text] [Related]
60. CNS plasticity after hemicerebellectomy in the young rat. Quantitative relations between aberrant and normal cerebello-rubral projections. Gramsbergen A; Ijkema-Paassen J Neurosci Lett; 1982 Nov; 33(2):129-34. PubMed ID: 7155454 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]