These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10714275)

  • 1. 2,4-dinitrophenylhydrazine carbonyl assay in metal-catalysed protein glycoxidation.
    Stefek M; Trnkova Z; Krizanova L
    Redox Rep; 1999; 4(1-2):43-8. PubMed ID: 10714275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of protein-bound carbonyl groups in the formation of advanced glycation endproducts.
    Liggins J; Furth AJ
    Biochim Biophys Acta; 1997 Aug; 1361(2):123-30. PubMed ID: 9300793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simplified 2,4-dinitrophenylhydrazine spectrophotometric assay for quantification of carbonyls in oxidized proteins.
    Mesquita CS; Oliveira R; Bento F; Geraldo D; Rodrigues JV; Marcos JC
    Anal Biochem; 2014 Aug; 458():69-71. PubMed ID: 24814294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cyperus rotundus suppresses AGE formation and protein oxidation in a model of fructose-mediated protein glycoxidation.
    Ardestani A; Yazdanparast R
    Int J Biol Macromol; 2007 Dec; 41(5):572-8. PubMed ID: 17765965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reactive carbonyl formation by oxidative and non-oxidative pathways.
    Adams S; Green P; Claxton R; Simcox S; Williams MV; Walsh K; Leeuwenburgh C
    Front Biosci; 2001 Aug; 6():A17-24. PubMed ID: 11487471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids.
    Dalle-Donne I; Carini M; Orioli M; Vistoli G; Regazzoni L; Colombo G; Rossi R; Milzani A; Aldini G
    Free Radic Biol Med; 2009 May; 46(10):1411-9. PubMed ID: 19268703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes.
    Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV
    Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein and cell wall polysaccharide carbonyl determination by a neutral pH 2,4-dinitrophenylhydrazine-based photometric assay.
    Georgiou CD; Zisimopoulos D; Argyropoulou V; Kalaitzopoulou E; Salachas G; Grune T
    Redox Biol; 2018 Jul; 17():128-142. PubMed ID: 29684819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of protein carbonyls by glycoxidation and lipoxidation reactions with autoxidation products of ascorbic acid and polyunsaturated fatty acids.
    Miyata T; Inagi R; Asahi K; Yamada Y; Horie K; Sakai H; Uchida K; Kurokawa K
    FEBS Lett; 1998 Oct; 437(1-2):24-8. PubMed ID: 9804165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine.
    Cao G; Cutler RG
    Arch Biochem Biophys; 1995 Jun; 320(1):106-14. PubMed ID: 7793968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins.
    Requena JR; Chao CC; Levine RL; Stadtman ER
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):69-74. PubMed ID: 11120890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of superoxide to reduced antioxidant activity of glycoxidative serum albumin.
    Sakata N; Moh A; Takebayashi S
    Heart Vessels; 2002 Nov; 17(1):22-9. PubMed ID: 12434198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitroxides prevent protein glycoxidation in vitro.
    Sadowska-Bartosz I; Galiniak S; Skolimowski J; Stefaniuk I; Bartosz G
    Free Radic Res; 2015 Feb; 49(2):113-21. PubMed ID: 25363554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycation and glycoxidation studies in vitro on isolated human vitreous collagen.
    Sulochana KN; Ramprasad S; Coral K; Lakshmi S; Punitham R; Narayanasamy A; Ramakrishnan S
    Med Sci Monit; 2003 Jun; 9(6):BR220-4. PubMed ID: 12824944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ADP-ribose in glycation and glycoxidation reactions.
    Jacobson EL; Cervantes-Laurean D; Jacobson MK
    Adv Exp Med Biol; 1997; 419():371-9. PubMed ID: 9193679
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How to help the skin cope with glycoxidation.
    Danoux L; Mine S; Abdul-Malak N; Henry F; Jeanmaire C; Freis O; Pauly G; Cittadini L; André-Frei V; Rathjens A
    Clin Chem Lab Med; 2014 Jan; 52(1):175-82. PubMed ID: 23612546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrazone formation of 2,4-dinitrophenylhydrazine with pyrroloquinoline quinone in porcine kidney diamine oxidase.
    van der Meer RA; Jongejan JA; Frank J; Duine JA
    FEBS Lett; 1986 Sep; 206(1):111-4. PubMed ID: 3093271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein glycation and oxidation inhibitory activity of Centella asiatica phenolics (CAP) in glucose-mediated bovine serum albumin glycoxidation.
    Eze FN; Tola AJ
    Food Chem; 2020 Dec; 332():127302. PubMed ID: 32615389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of protein glycoxidation and advanced glycation end-product formation by barnyard millet (Echinochloa frumentacea) phenolics.
    Anis MA; Sreerama YN
    Food Chem; 2020 Jun; 315():126265. PubMed ID: 32014668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.