These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 10714275)

  • 21. Photosensitized growth inhibition of cultured human skin cells: mechanism and suppression of oxidative stress from solar irradiation of glycated proteins.
    Wondrak GT; Roberts MJ; Jacobson MK; Jacobson EL
    J Invest Dermatol; 2002 Aug; 119(2):489-98. PubMed ID: 12190875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitation of oxidative damage to tissue proteins.
    Fagan JM; Sleczka BG; Sohar I
    Int J Biochem Cell Biol; 1999 Jul; 31(7):751-7. PubMed ID: 10467731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monosaccharide-Mediated Glycoxidation of Bovine Serum Albumin and Its Prevention by
    Balyan P; Farah MA; Al-Anazi KM; Ali A
    ACS Omega; 2024 Oct; 9(40):41722-41731. PubMed ID: 39398181
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The pyridoxamine action on Amadori compounds: A reexamination of its scavenging capacity and chelating effect.
    Adrover M; Vilanova B; Frau J; Muñoz F; Donoso J
    Bioorg Med Chem; 2008 May; 16(10):5557-69. PubMed ID: 18434162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beneficial effect of Azadirachta indica on advanced glycation end-product in streptozotocin-diabetic rat.
    Perez Gutierrez RM; de Jesus Martinez Ortiz M
    Pharm Biol; 2014 Nov; 52(11):1435-44. PubMed ID: 25026338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation endproducts.
    Ahmad MS; Pischetsrieder M; Ahmed N
    Eur J Pharmacol; 2007 Apr; 561(1-3):32-8. PubMed ID: 17321518
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Lipoprotein glycation and glycoxidation: their importance in diabetes mellitus].
    Actis Dato SM; Rebolledo OR
    Medicina (B Aires); 2000; 60(5 Pt 1):645-56. PubMed ID: 11188909
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of protein carbonyl groups by immunoblotting.
    Robinson CE; Keshavarzian A; Pasco DS; Frommel TO; Winship DH; Holmes EW
    Anal Biochem; 1999 Jan; 266(1):48-57. PubMed ID: 9887212
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative modification of serum albumin in an experimental glycation model of diabetes mellitus in vitro: effect of the pyridoindole antioxidant stobadine.
    Stefek M; Krizanova L; Trnkova Z
    Life Sci; 1999; 65(18-19):1995-7. PubMed ID: 10576453
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidatively modified plasma phospholipids containing reactive carbonyl functions measured by HPLC: evidence for phosphatidylcholine-bound aldehydes in plasma of burn patients.
    Gasser H; Hallström S; Redl H; Schlag G
    Free Radic Res; 1995 Apr; 22(4):327-36. PubMed ID: 7633563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Denuder sampling techniques for the determination of gas-phase carbonyl compounds: a comparison and characterisation of in situ and ex situ derivatisation methods.
    Kahnt A; Iinuma Y; Böge O; Mutzel A; Herrmann H
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 May; 879(17-18):1402-11. PubMed ID: 21411383
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrochemical Sensor for Carbonyl Groups in Oxidized Proteins.
    Enache TA; Matei E; Diculescu VC
    Anal Chem; 2019 Feb; 91(3):1920-1927. PubMed ID: 30574784
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay.
    Luo S; Wehr NB
    Redox Rep; 2009; 14(4):159-66. PubMed ID: 19695123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preliminary evaluation of the antiglycoxidant activity of verapamil using various
    Nesterowicz M; Lauko KK; Dańkowska K; Trocka D; Żendzian-Piotrowska M; Ładny JR; Zalewska A; Maciejczyk M
    Front Pharmacol; 2023; 14():1293295. PubMed ID: 38089049
    [No Abstract]   [Full Text] [Related]  

  • 35. Protein glycation: creation of catalytic sites for free radical generation.
    Yim MB; Yim HS; Lee C; Kang SO; Chock PB
    Ann N Y Acad Sci; 2001 Apr; 928():48-53. PubMed ID: 11795527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Autosensitized oxidation of glycated bovine lens proteins irradiated with UVA-visible light at low oxygen concentration.
    Avila F; Matus A; Fuentealba D; Lissi E; Friguet B; Silva E
    Photochem Photobiol Sci; 2008 Jun; 7(6):718-24. PubMed ID: 18528557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative stresses induced by glycoxidized human or bovine serum albumin on human monocytes.
    Rondeau P; Singh NR; Caillens H; Tallet F; Bourdon E
    Free Radic Biol Med; 2008 Sep; 45(6):799-812. PubMed ID: 18616999
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formation of carbonyls during attack on insulin by submolar amounts of hypochlorite.
    Handelman GJ; Nightingale ZD; Dolnikowski GG; Blumberg JB
    Anal Biochem; 1998 May; 258(2):339-48. PubMed ID: 9570850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glucose autoxidation and protein modification. The potential role of 'autoxidative glycosylation' in diabetes.
    Wolff SP; Dean RT
    Biochem J; 1987 Jul; 245(1):243-50. PubMed ID: 3117042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation of protein-bound copper ions during early glycation: study on two proteins.
    Argirova MD; Ortwerth BJ
    Arch Biochem Biophys; 2003 Dec; 420(1):176-84. PubMed ID: 14622988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.