BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 10714699)

  • 1. Hydrogen atom abstraction by Cu(II)- and Zn(II)-phenoxyl radical complexes, models for the active form of galactose oxidase.
    Taki M; Kumei H; Itoh S; Fukuzumi S
    J Inorg Biochem; 2000 Jan; 78(1):1-5. PubMed ID: 10714699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Galactose oxidase models: tuning the properties of CuII-phenoxyl radicals.
    Philibert A; Thomas F; Philouze C; Hamman S; Saint-Aman E; Pierre JL
    Chemistry; 2003 Aug; 9(16):3803-12. PubMed ID: 12916104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of metal ions on physicochemical properties and redox reactivity of phenolates and phenoxyl radicals: mechanistic insight into hydrogen atom abstraction by phenoxyl radical-metal complexes.
    Itoh S; Kumei H; Nagatomo S; Kitagawa T; Fukuzumi S
    J Am Chem Soc; 2001 Mar; 123(10):2165-75. PubMed ID: 11456861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic insights from reactions between copper(II)-phenoxyl complexes and substrates with activated C-H bonds.
    Pratt RC; Stack TD
    Inorg Chem; 2005 Apr; 44(7):2367-75. PubMed ID: 15792472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and properties of diphenoxo-bridged CoII, NiII, CuII, and ZnII complexes of a new tripodal ligand: generation and properties of MII-coordinated phenoxyl radical species.
    Mukherjee A; Lloret F; Mukherjee R
    Inorg Chem; 2008 Jun; 47(11):4471-80. PubMed ID: 18461927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co(II), Ni(II), Cu(II) and Zn(II) complexes of a bipyridine bis-phenol conjugate: generation and properties of coordinated radical species.
    Arora H; Philouze C; Jarjayes O; Thomas F
    Dalton Trans; 2010 Nov; 39(42):10088-98. PubMed ID: 20820605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marked stabilization of redox states and enhanced catalytic activity in galactose oxidase models based on transition metal S-methylisothiosemicarbazonates with -SR group in ortho position to the phenolic oxygen.
    Arion VB; Platzer S; Rapta P; Machata P; Breza M; Vegh D; Dunsch L; Telser J; Shova S; Mac Leod TC; Pombeiro AJ
    Inorg Chem; 2013 Jul; 52(13):7524-40. PubMed ID: 23758222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Galactose oxidase models: solution chemistry, and phenoxyl radical generation mediated by the copper status.
    Michel F; Thomas F; Hamman S; Saint-Aman E; Bucher C; Pierre JL
    Chemistry; 2004 Sep; 10(17):4115-25. PubMed ID: 15352095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model complexes for the active form of galactose oxidase. Physicochemical properties of Cu(II)- and Zn(II)-phenoxyl radical complexes.
    Itoh S; Taki M; Kumei H; Takayama S; Nagatomo S; Kitagawa T; Sakurada N; Arakawa R; Fukuzumi S
    Inorg Chem; 2000 Aug, 7; 39(16):3708-11. PubMed ID: 11196837
    [No Abstract]   [Full Text] [Related]  

  • 11. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic galactose oxidase models: biomimetic Cu(II)-phenoxyl-radical reactivity.
    Wang Y; DuBois JL; Hedman B; Hodgson KO; Stack TD
    Science; 1998 Jan; 279(5350):537-40. PubMed ID: 9438841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the one-electron oxidized Cu(II)-salen complexes with a side chain aromatic ring: the effect of the indole ring on the Cu(II)-phenoxyl radical species.
    Oshita H; Yoshimura T; Mori S; Tani F; Shimazaki Y; Yamauchi O
    J Biol Inorg Chem; 2018 Jan; 23(1):51-59. PubMed ID: 29218633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intramolecularly hydrogen-bonded versus copper(II) coordinated mono- and bis-phenoxyl radicals.
    Thomas F; Jarjayes O; Duboc C; Philouze C; Saint-Aman E; Pierre JL
    Dalton Trans; 2004 Sep; (17):2662-9. PubMed ID: 15514749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular charge transfer and biomimetic reaction kinetics in galactose oxidase model complexes.
    Pratt RC; Stack TD
    J Am Chem Soc; 2003 Jul; 125(29):8716-7. PubMed ID: 12862453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of a phenoxyl radical complex relevant to the metal site of the galactose oxidase enzyme: A facile one-pot synthesis, evidence for hydrogen atom transfer and DNA cleavage
    Singh O; Singh A; Maji A; Chauhan R; Gupta P; Ghosh K
    Dalton Trans; 2024 Jan; 53(3):986-995. PubMed ID: 38088032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catecholase activity of a series of dicopper(II) complexes with variable Cu-OH(phenol) moieties.
    Neves A; Rossi LM; Bortoluzzi AJ; Szpoganicz B; Wiezbicki C; Schwingel E; Haase W; Ostrovsky S
    Inorg Chem; 2002 Apr; 41(7):1788-94. PubMed ID: 11925171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt).
    Shimazaki Y; Yajima T; Tani F; Karasawa S; Fukui K; Naruta Y; Yamauchi O
    J Am Chem Soc; 2007 Mar; 129(9):2559-68. PubMed ID: 17290991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Snapshots of a metamorphosing Cu(II) ground state in a galactose oxidase-inspired complex.
    Pratt RC; Mirica LM; Stack TD
    Inorg Chem; 2004 Dec; 43(25):8030-9. PubMed ID: 15578842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.