BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 10715101)

  • 1. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of substitutions D73E, D73N, D103N and V106M on signaling and pH titration of sensory rhodopsin II.
    Zhu J; Spudich EN; Alam M; Spudich JL
    Photochem Photobiol; 1997 Dec; 66(6):788-91. PubMed ID: 9421965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Schiff base counterion of bacteriorhodopsin is protonated in sensory rhodopsin I: spectroscopic and functional characterization of the mutated proteins D76N and D76A.
    Rath P; Olson KD; Spudich JL; Rothschild KJ
    Biochemistry; 1994 May; 33(18):5600-6. PubMed ID: 8180184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constitutive signaling by the phototaxis receptor sensory rhodopsin II from disruption of its protonated Schiff base-Asp-73 interhelical salt bridge.
    Spudich EN; Zhang W; Alam M; Spudich JL
    Proc Natl Acad Sci U S A; 1997 May; 94(10):4960-5. PubMed ID: 9144172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin.
    Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N
    Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positioning proton-donating residues to the Schiff-base accelerates the M-decay of pharaonis phoborhodopsin expressed in Escherichia coli.
    Iwamoto M; Shimono K; Sumi M; Kamo N
    Biophys Chem; 1999 Jun; 79(3):187-92. PubMed ID: 10443011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin.
    Shimono K; Furutani Y; Kandori H; Kamo N
    Biochemistry; 2002 May; 41(20):6504-9. PubMed ID: 12009914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protonation changes during the photocycle of sensory rhodopsin II from Natronobacterium pharaonis.
    Engelhard M; Scharf B; Siebert F
    FEBS Lett; 1996 Oct; 395(2-3):195-8. PubMed ID: 8898094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton circulation during the photocycle of sensory rhodopsin II.
    Sasaki J; Spudich JL
    Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton transport by sensory rhodopsins and its modulation by transducer-binding.
    Sasaki J; Spudich JL
    Biochim Biophys Acta; 2000 Aug; 1460(1):230-9. PubMed ID: 10984603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FTIR spectroscopy of the M photointermediate in pharaonis rhoborhodopsin.
    Furutani Y; Iwamoto M; Shimono K; Kamo N; Kandori H
    Biophys J; 2002 Dec; 83(6):3482-9. PubMed ID: 12496114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals.
    Sudo Y; Furutani Y; Spudich JL; Kandori H
    J Biol Chem; 2007 May; 282(21):15550-8. PubMed ID: 17387174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromophore-protein-water interactions in the L intermediate of bacteriorhodopsin: FTIR study of the photoreaction of L at 80 K.
    Maeda A; Tomson FL; Gennis RB; Ebrey TG; Balashov SP
    Biochemistry; 1999 Jul; 38(27):8800-7. PubMed ID: 10393556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin.
    Bousché O; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 1991 Jun; 30(22):5395-400. PubMed ID: 2036407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FTIR spectroscopy of the O photointermediate in pharaonis phoborhodopsin.
    Furutani Y; Iwamoto M; Shimono K; Wada A; Ito M; Kamo N; Kandori H
    Biochemistry; 2004 May; 43(18):5204-12. PubMed ID: 15122886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FTIR studies of internal water molecules in the Schiff base region of bacteriorhodopsin.
    Shibata M; Kandori H
    Biochemistry; 2005 May; 44(20):7406-13. PubMed ID: 15895984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transporter converted into a sensor, a phototaxis signaling mutant of bacteriorhodopsin at 3.0 Å.
    Spudich EN; Ozorowski G; Schow EV; Tobias DJ; Spudich JL; Luecke H
    J Mol Biol; 2012 Jan; 415(3):455-63. PubMed ID: 22123198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural changes due to the deprotonation of the proton release group in the M-photointermediate of bacteriorhodopsin as revealed by time-resolved FTIR spectroscopy.
    Morgan JE; Vakkasoglu AS; Lugtenburg J; Gennis RB; Maeda A
    Biochemistry; 2008 Nov; 47(44):11598-605. PubMed ID: 18837559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.