These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 10715131)

  • 1. Identification of the metal-binding sites of restriction endonucleases by Fe2+-mediated oxidative cleavage.
    Hlavaty JJ; Benner JS; Hornstra LJ; Schildkraut I
    Biochemistry; 2000 Mar; 39(11):3097-105. PubMed ID: 10715131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of TaqI endonuclease active site residues by Fe2+-mediated oxidative cleavage.
    Cao W; Barany F
    J Biol Chem; 1998 Dec; 273(49):33002-10. PubMed ID: 9830053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity cleavage at the metal-binding site of phosphoenolpyruvate carboxykinase.
    Hlavaty JJ; Nowak T
    Biochemistry; 1997 Dec; 36(49):15514-25. PubMed ID: 9398280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation by site-directed mutagenesis of aspartic acid residues in the metal site of pig heart NADP-dependent isocitrate dehydrogenase.
    Grodsky NB; Soundar S; Colman RF
    Biochemistry; 2000 Mar; 39(9):2193-200. PubMed ID: 10694384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+ binding in the active site of HincII: implications for the catalytic mechanism.
    Etzkorn C; Horton NC
    Biochemistry; 2004 Oct; 43(42):13256-70. PubMed ID: 15491133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximity mapping of the Tet repressor-tetracycline-Fe2+ complex by hydrogen peroxide mediated protein cleavage.
    Ettner N; Metzger JW; Lederer T; Hulmes JD; Kisker C; Hinrichs W; Ellestad GA; Hillen W
    Biochemistry; 1995 Jan; 34(1):22-31. PubMed ID: 7819199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based redesign of the catalytic/metal binding site of Cfr10I restriction endonuclease reveals importance of spatial rather than sequence conservation of active centre residues.
    Skirgaila R; Grazulis S; Bozic D; Huber R; Siksnys V
    J Mol Biol; 1998 Jun; 279(2):473-81. PubMed ID: 9642051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease EcoRV.
    Selent U; Rüter T; Köhler E; Liedtke M; Thielking V; Alves J; Oelgeschläger T; Wolfes H; Peters F; Pingoud A
    Biochemistry; 1992 May; 31(20):4808-15. PubMed ID: 1591242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective oxidative modification and affinity cleavage of pigeon liver malic enzyme by the Cu(2+)-ascorbate system.
    Chou WY; Tsai WP; Lin CC; Chang GG
    J Biol Chem; 1995 Oct; 270(43):25935-41. PubMed ID: 7592782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of BsoBI restriction endonuclease in E. coli, purification of the recombinant BsoBI, and identification of catalytic residues of BsoBI by random mutagenesis.
    Ruan H; Lunnen KD; Pelletier JJ; Xu S
    Gene; 1997 Mar; 188(1):35-9. PubMed ID: 9099856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PvuII endonuclease contains two calcium ions in active sites.
    Horton JR; Cheng X
    J Mol Biol; 2000 Jul; 300(5):1049-56. PubMed ID: 10903853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
    Sam MD; Perona JJ
    Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions.
    Berens C; Streicher B; Schroeder R; Hillen W
    Chem Biol; 1998 Mar; 5(3):163-75. PubMed ID: 9545425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-linking of bromodeoxyuridine-substituted oligonucleotides to the EcoRI and EcoRV restriction endonucleases.
    Wolfes H; Fliess A; Winkler F; Pingoud A
    Eur J Biochem; 1986 Sep; 159(2):267-73. PubMed ID: 3019685
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recognition and cleavage of DNA by type-II restriction endonucleases.
    Pingoud A; Jeltsch A
    Eur J Biochem; 1997 May; 246(1):1-22. PubMed ID: 9210460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based sequence alignment of type-II restriction endonucleases.
    Deva T; Krishnaswamy S
    Biochim Biophys Acta; 2001 Jan; 1544(1-2):217-28. PubMed ID: 11341931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, functional, and evolutionary relationships between lambda-exonuclease and the type II restriction endonucleases.
    Kovall RA; Matthews BW
    Proc Natl Acad Sci U S A; 1998 Jul; 95(14):7893-7. PubMed ID: 9653111
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinvestigation of the molecular influence of hypoxanthine on the DNA cleavage efficiency of restriction endonucleases BglII, EcoRI and BamHI.
    Doi A; Pack SP; Kodaki T; Makino K
    J Biochem; 2009 Aug; 146(2):201-8. PubMed ID: 19364803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanism of DNA cleavage by the type II restriction enzyme EcoRV: Asp36 is not directly involved in DNA cleavage but serves to couple indirect readout to catalysis.
    Stahl F; Wende W; Jeltsch A; Pingoud A
    Biol Chem; 1998; 379(4-5):467-73. PubMed ID: 9628339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divalent metal dependence of site-specific DNA binding by EcoRV endonuclease.
    Martin AM; Horton NC; Lusetti S; Reich NO; Perona JJ
    Biochemistry; 1999 Jun; 38(26):8430-9. PubMed ID: 10387089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.