BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 10715809)

  • 1. Insulin and insulin-like growth factor-I cause vasorelaxation in human vessels in vitro.
    Izhar U; Hasdai D; Richardson DM; Cohen P; Lerman A
    Coron Artery Dis; 2000 Feb; 11(1):69-76. PubMed ID: 10715809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin and insulin-like growth factor-I cause coronary vasorelaxation in vitro.
    Hasdai D; Rizza RA; Holmes DR; Richardson DM; Cohen P; Lerman A
    Hypertension; 1998 Aug; 32(2):228-34. PubMed ID: 9719047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of non-insulin dependent diabetes mellitus on the reactivity of human internal mammary artery and human saphenous vein.
    Karasu C; Soncul H; Altan VM
    Life Sci; 1995; 57(2):103-12. PubMed ID: 7603292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of resveratrol on vascular tone and endothelial function of human saphenous vein and internal mammary artery.
    Rakici O; Kiziltepe U; Coskun B; Aslamaci S; Akar F
    Int J Cardiol; 2005 Nov; 105(2):209-15. PubMed ID: 16243115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated in vitro coronary arteriolar vasorelaxation to insulin-like growth factor I in experimental hypercholesterolemia.
    Hasdai D; Nielsen MF; Rizza RA; Holmes DR; Richardson DM; Cohen P; Lerman A
    Hypertension; 1999 Jul; 34(1):89-95. PubMed ID: 10406829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dendroaspis natriuretic peptide relaxes isolated human arteries and veins.
    Best PJ; Burnett JC; Wilson SH; Holmes DR; Lerman A
    Cardiovasc Res; 2002 Aug; 55(2):375-84. PubMed ID: 12123777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-nitrosothiols cause prolonged, nitric oxide-mediated relaxation in human saphenous vein and internal mammary artery: therapeutic potential in bypass surgery.
    Sogo N; Campanella C; Webb DJ; Megson IL
    Br J Pharmacol; 2000 Nov; 131(6):1236-44. PubMed ID: 11082133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estrogen induces nitric oxide-mediated vasodilation of human mammary arteries in vitro.
    Nechmad A; Merin G; Schwalb H; Shimon DV; Borman JB; Milgalter E; Mosseri M
    Nitric Oxide; 1998; 2(6):460-6. PubMed ID: 10342489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Papaverive abolishes endothelium-dependent dilatation of human internal mammary arteries in vitro.
    Schyvens CG; Owe-Young RA; Spratt PM; Mundy JA; Farnsworth AE; Macdonald PS
    Clin Exp Pharmacol Physiol; 1997; 24(3-4):223-8. PubMed ID: 9131289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of endothelium-dependent vasoactivity of internal mammary arteries from hypertensive, hypercholesterolemic, and diabetic patients.
    Pompilio G; Rossoni G; Alamanni F; Tartara P; Barajon I; Rumio C; Manfredi B; Biglioli P
    Ann Thorac Surg; 2001 Oct; 72(4):1290-7. PubMed ID: 11603450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vascular endothelial growth factor-induced nitric oxide- and PGI2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants.
    Wei W; Jin H; Chen ZW; Zioncheck TF; Yim AP; He GW
    J Cardiovasc Pharmacol; 2004 Nov; 44(5):615-21. PubMed ID: 15505501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia increases vasodilator release from internal mammary artery and saphenous vein grafts.
    Pearson PJ; Evora PR; Discigil B; Schaff HV
    Ann Thorac Surg; 1998 May; 65(5):1220-5. PubMed ID: 9594841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inducible L-arginine/nitric oxide pathway in human internal mammary artery and saphenous vein.
    Thorin-Trescases N; Hamilton CA; Reid JL; McPherson KL; Jardine E; Berg G; Bohr D; Dominiczak AF
    Am J Physiol; 1995 Mar; 268(3 Pt 2):H1122-32. PubMed ID: 7900866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of gender, smoking profile, hypertension, and diabetes on saphenous vein and internal mammary artery endothelial relaxation in patients with coronary artery bypass grafting.
    Muir AD; McKeown PP; Bayraktutan U
    Oxid Med Cell Longev; 2010; 3(3):199-205. PubMed ID: 20716944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urocortin-induced relaxation in the human internal mammary artery.
    Chen ZW; Huang Y; Yang Q; Li X; Wei W; He GW
    Cardiovasc Res; 2005 Mar; 65(4):913-20. PubMed ID: 15721872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Action of vasoactive intestinal peptide and distribution of its binding sites in vessels used for coronary artery bypass grafts.
    Luu TN; Dashwood MR; Chester AH; Tadjkarimi S; Yacoub MH
    Am J Cardiol; 1993 Jun; 71(15):1278-82. PubMed ID: 8388626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced nitric oxide-mediated vascular relaxation in radial artery compared with internal mammary artery or saphenous vein.
    Shapira OM; Xu A; Aldea GS; Vita JA; Shemin RJ; Keaney JF
    Circulation; 1999 Nov; 100(19 Suppl):II322-7. PubMed ID: 10567323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct comparison of relaxation and cGMP production in human coronary by-pass grafts in response to stimulation with natriuretic peptides and a nitric oxide donor.
    Hammerer-Lercher A; Fersterer J; Holzmann S; Bonatti J; Ruttmann E; Hoefer D; Mair J; Puschendorf B
    Clin Sci (Lond); 2006 Sep; 111(3):225-31. PubMed ID: 16709152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery.
    Wei W; Chen ZW; Yang Q; Jin H; Furnary A; Yao XQ; Yim AP; He GW
    Vascul Pharmacol; 2007 Apr; 46(4):253-9. PubMed ID: 17174609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of vasoactive neuropeptides on human saphenous vein.
    Luu TN; Chester AH; O'Neil GS; Tadjkarimi S; Yacoub MH
    Br Heart J; 1992 Jun; 67(6):474-7. PubMed ID: 1377922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.