These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 10716195)

  • 21. Proline cis-trans isomerization and protein folding.
    Wedemeyer WJ; Welker E; Scheraga HA
    Biochemistry; 2002 Dec; 41(50):14637-44. PubMed ID: 12475212
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of two proline-containing turns in the folding of porcine ribonuclease.
    Lang K; Schmid FX
    J Mol Biol; 1990 Mar; 212(1):185-96. PubMed ID: 2319596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. His...Asp catalytic dyad of ribonuclease A: conformational stability of the wild-type, D121N, D121A, and H119A enzymes.
    Quirk DJ; Park C; Thompson JE; Raines RT
    Biochemistry; 1998 Dec; 37(51):17958-64. PubMed ID: 9922164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic coupling between protein folding and prolyl isomerization. II. Folding of ribonuclease A and ribonuclease T1.
    Kiefhaber T; Schmid FX
    J Mol Biol; 1992 Mar; 224(1):231-40. PubMed ID: 1548701
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stability and folding kinetics of ribonuclease T1 are strongly altered by the replacement of cis-proline 39 with alanine.
    Mayr LM; Landt O; Hahn U; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):897-912. PubMed ID: 8515459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hinge region cis-proline in ribonuclease A acts as a conformational gatekeeper for C-terminal domain swapping.
    Miller KH; Karr JR; Marqusee S
    J Mol Biol; 2010 Jul; 400(3):567-78. PubMed ID: 20471398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structure and stability of the P93G variant of ribonuclease A.
    Schultz LW; Hargraves SR; Klink TA; Raines RT
    Protein Sci; 1998 Jul; 7(7):1620-5. PubMed ID: 9684895
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways.
    Talluri S; Rothwarf DM; Scheraga HA
    Biochemistry; 1994 Aug; 33(34):10437-49. PubMed ID: 8068682
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A localized specific interaction alters the unfolding pathways of structural homologues.
    Xu G; Narayan M; Kurinov I; Ripoll DR; Welker E; Khalili M; Ealick SE; Scheraga HA
    J Am Chem Soc; 2006 Feb; 128(4):1204-13. PubMed ID: 16433537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The folding pathway of onconase is directed by a conserved intermediate.
    Schulenburg C; Löw C; Weininger U; Mrestani-Klaus C; Hofmann H; Balbach J; Ulbrich-Hofmann R; Arnold U
    Biochemistry; 2009 Sep; 48(35):8449-57. PubMed ID: 19655705
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local structure in a tryptic fragment of performic acid oxidized ribonuclease A corresponding to a proposed polypeptide chain-folding initiation site detected by tyrosine fluorescence lifetime and proton magnetic resonance measurements.
    Haas E; Montelione GT; McWherter CA; Scheraga HA
    Biochemistry; 1987 Mar; 26(6):1672-83. PubMed ID: 3593685
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A.
    Navon A; Ittah V; Laity JH; Scheraga HA; Haas E; Gussakovsky EE
    Biochemistry; 2001 Jan; 40(1):93-104. PubMed ID: 11141060
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants.
    Merlino A; Russo Krauss I; Perillo M; Mattia CA; Ercole C; Picone D; Vergara A; Sica F
    Biopolymers; 2009 Dec; 91(12):1029-37. PubMed ID: 19280639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The swapping of terminal arms in ribonucleases: comparison of the solution structure of monomeric bovine seminal and pancreatic ribonucleases.
    Avitabile F; Alfano C; Spadaccini R; Crescenzi O; D'Ursi AM; D'Alessio G; Tancredi T; Picone D
    Biochemistry; 2003 Jul; 42(29):8704-11. PubMed ID: 12873130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Folding initiation structures in the C-terminal portions of the reduced protein.
    Navon A; Ittah V; Landsman P; Scheraga HA; Haas E
    Biochemistry; 2001 Jan; 40(1):105-18. PubMed ID: 11141061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Proton NMR assignments and regular backbone structure of bovine pancreatic ribonuclease A in aqueous solution.
    Robertson AD; Purisima EO; Eastman MA; Scheraga HA
    Biochemistry; 1989 Jul; 28(14):5930-8. PubMed ID: 2775743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy.
    Reinstädler D; Fabian H; Backmann J; Naumann D
    Biochemistry; 1996 Dec; 35(49):15822-30. PubMed ID: 8961946
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valine 108, a chain-folding initiation site-belonging residue, crucial for the ribonuclease A stability.
    Coll MG; Protasevich II; Torrent J; Ribó M; Lobachov VM; Makarov AA; Vilanova M
    Biochem Biophys Res Commun; 1999 Nov; 265(2):356-60. PubMed ID: 10558871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Folding mechanism of ribonuclease T1 in the absence of the disulfide bonds.
    Mücke M; Schmid FX
    Biochemistry; 1994 Dec; 33(48):14608-19. PubMed ID: 7981223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease.
    Schmid FX; Grafl R; Wrba A; Beintema JJ
    Proc Natl Acad Sci U S A; 1986 Feb; 83(4):872-6. PubMed ID: 3456571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.