These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

379 related articles for article (PubMed ID: 10716437)

  • 21. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Demonstration of two-dimensional photonic crystals based on silicon carbide.
    Song BS; Yamada S; Asano T; Noda S
    Opt Express; 2011 Jun; 19(12):11084-9. PubMed ID: 21716336
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Large complete bandgaps in a two-dimensional square photonic crystal with isolated single-atom dielectric rods in air.
    Yang XL; Cai LZ; Wang YR; Dong GY; Shen XX; Meng XF; Hu Y
    Nanotechnology; 2008 Jan; 19(2):025201. PubMed ID: 21817535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Anomalous refractive effects in honeycomb lattice photonic crystals formed by holographic lithography.
    Dong GY; Yang XL; Cai LZ
    Opt Express; 2010 Aug; 18(16):16302-8. PubMed ID: 20721016
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trapping and emission of photons by a single defect in a photonic bandgap structure.
    Noda S; Chutinan A; Imada M
    Nature; 2000 Oct; 407(6804):608-10. PubMed ID: 11034204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Spectral properties of two-dimensional photonic crystal quantum well structures].
    Wang DD; Wang YS; Xu Z; Deng LE; Zhang CX; Han X
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 May; 28(5):988-90. PubMed ID: 18720784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Defect modes in one-dimensional comblike photonic crystals].
    Xia H; Peng JC; Zhang BY; Li HJ; Jian ZJ; Zhou RL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Oct; 22(5):734-7. PubMed ID: 12938415
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flexible Holographic Fabrication of 3D Photonic Crystal Templates with Polarization Control through a 3D Printed Reflective Optical Element.
    Lowell D; George D; Lutkenhaus J; Tian C; Adewole M; Philipose U; Zhang H; Lin Y
    Micromachines (Basel); 2016 Jul; 7(7):. PubMed ID: 30404300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flexible fabrication of three-dimensional optical-domain photonic crystals using a combination of single-laser-exposure diffractive-optics lithography and template inversion.
    Chanda D; Zachari N; Haque M; Ng ML; Herman PR
    Opt Lett; 2009 Dec; 34(24):3920-2. PubMed ID: 20016658
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-dimensional silicon inverse photonic quasicrystals for infrared wavelengths.
    Ledermann A; Cademartiri L; Hermatschweiler M; Toninelli C; Ozin GA; Wiersma DS; Wegener M; von Freymann G
    Nat Mater; 2006 Dec; 5(12):942-5. PubMed ID: 17128257
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanostructured magnonic crystals with size-tunable bandgaps.
    Wang ZK; Zhang VL; Lim HS; Ng SC; Kuok MH; Jain S; Adeyeye AO
    ACS Nano; 2010 Feb; 4(2):643-8. PubMed ID: 20099868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-dimensional diffractive optical element based fabrication and spectral characterization of three-dimensional photonic crystal templates.
    Chanda D; Abolghasemi L; Herman PR
    Opt Express; 2006 Sep; 14(19):8568-77. PubMed ID: 19529236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.
    George D; Lutkenhaus J; Lowell D; Moazzezi M; Adewole M; Philipose U; Zhang H; Poole ZL; Chen KP; Lin Y
    Opt Express; 2014 Sep; 22(19):22421-31. PubMed ID: 25321713
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multicolor patterning using holographic woodpile photonic crystals at visible wavelengths.
    Park SG; Yang SM
    Nanoscale; 2013 May; 5(10):4110-3. PubMed ID: 23538506
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of transmission properties through two-bend resonance by holographic design for a two-dimensional photonic crystal waveguide.
    Dong GY; Yang XL; Cai LZ; Shen XX; Wang YR
    Opt Express; 2008 Sep; 16(20):15375-81. PubMed ID: 18825173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-quality photonic crystals with a nearly complete band gap obtained by direct inversion of woodpile templates with titanium dioxide.
    Marichy C; Muller N; Froufe-Pérez LS; Scheffold F
    Sci Rep; 2016 Feb; 6():21818. PubMed ID: 26911540
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Holographic Fabrication of 3D Moiré Photonic Crystals Using Circularly Polarized Laser Beams and a Spatial Light Modulator.
    Hurley N; Kamau S; Cui J; Lin Y
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Introduction.
    de Sterke CM; Busch K
    Opt Express; 2001 Jan; 8(3):166. PubMed ID: 19417800
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hierarchical nanoparticle bragg mirrors: tandem and gradient architectures.
    Redel E; Huai C; Renner M; von Freymann G; Ozin GA
    Small; 2011 Dec; 7(24):3465-71. PubMed ID: 22009683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.