BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10716572)

  • 21. Myrosinase Compatible Simultaneous Determination of Glucosinolates and Allyl Isothiocyanate by Capillary Electrophoresis Micellar Electrokinetic Chromatography (CE-MEKC).
    Gonda S; Kiss-Szikszai A; Szűcs Z; Nguyen NM; Vasas G
    Phytochem Anal; 2016 May; 27(3-4):191-8. PubMed ID: 27313156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modifying the processing and handling of frozen broccoli for increased sulforaphane formation.
    Dosz EB; Jeffery EH
    J Food Sci; 2013 Sep; 78(9):H1459-63. PubMed ID: 23915112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Approaches for enhancing the stability and formation of sulforaphane.
    Yuanfeng W; Chengzhi L; Ligen Z; Juan S; Xinjie S; Yao Z; Jianwei M
    Food Chem; 2021 May; 345():128771. PubMed ID: 33601652
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts.
    Guo RF; Yuan GF; Wang QM
    J Zhejiang Univ Sci B; 2013 Feb; 14(2):124-31. PubMed ID: 23365011
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching and degradation kinetics of glucosinolates during boiling of Brassica oleracea vegetables and the formation of their breakdown products.
    Hanschen FS; Kühn C; Nickel M; Rohn S; Dekker M
    Food Chem; 2018 Oct; 263():240-250. PubMed ID: 29784313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Docking of Potential Inhibitors of Broccoli Myrosinase.
    Román J; Castillo A; Mahn A
    Molecules; 2018 May; 23(6):. PubMed ID: 29849002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genotype influences sulfur metabolism in broccoli (Brassica oleracea L.) under elevated CO2 and NaCl stress.
    Rodríguez-Hernández Mdel C; Moreno DA; Carvajal M; Martínez-Ballesta Mdel C
    Plant Cell Physiol; 2014 Dec; 55(12):2047-59. PubMed ID: 25246493
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glucosinolates and myrosinase activity in red cabbage (Brassica oleracea L. var. Capitata f. rubra DC.) after various microwave treatments.
    Verkerk R; Dekker M
    J Agric Food Chem; 2004 Dec; 52(24):7318-23. PubMed ID: 15563214
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Supplementation of the Diet by Exogenous Myrosinase via Mustard Seeds to Increase the Bioavailability of Sulforaphane in Healthy Human Subjects after the Consumption of Cooked Broccoli.
    Okunade O; Niranjan K; Ghawi SK; Kuhnle G; Methven L
    Mol Nutr Food Res; 2018 Sep; 62(18):e1700980. PubMed ID: 29806738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Impact of Domestic Cooking Methods on Myrosinase Stability, Glucosinolates and Their Hydrolysis Products in Different Cabbage (
    Oloyede OO; Wagstaff C; Methven L
    Foods; 2021 Nov; 10(12):. PubMed ID: 34945460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.
    Wade KL; Ito Y; Ramarathnam A; Holtzclaw WD; Fahey JW
    Phytochem Anal; 2015; 26(1):47-53. PubMed ID: 25130502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced production of sulforaphane by exogenous glucoraphanin hydrolysis catalyzed by myrosinase extracted from Chinese flowering cabbage (Brassica rapa var. parachinensis).
    Sangkret S; Pongmalai P; Devahastin S; Chiewchan N
    Sci Rep; 2019 Jul; 9(1):9882. PubMed ID: 31285497
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermal and pressure stability of myrosinase enzymes from black mustard (Brassica nigra L. W.D.J. Koch. var. nigra), brown mustard (Brassica juncea L. Czern. var. juncea) and yellow mustard (Sinapsis alba L. subsp. maire) seeds.
    Okunade OA; Ghawi SK; Methven L; Niranjan K
    Food Chem; 2015 Nov; 187():485-90. PubMed ID: 25977054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional expression and characterization of the myrosinase MYR1 from Brassica napus in Saccharomyces cerevisiae.
    Chen S; Halkier BA
    Protein Expr Purif; 1999 Dec; 17(3):414-20. PubMed ID: 10600460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cloning of genes related to aliphatic glucosinolate metabolism and the mechanism of sulforaphane accumulation in broccoli sprouts under jasmonic acid treatment.
    Guo L; Yang R; Gu Z
    J Sci Food Agric; 2016 Oct; 96(13):4329-36. PubMed ID: 26786856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of myrosinase (thioglucoside glucohydrolase) activity by a spectrophotometric coupled enzyme assay.
    Wilkinson AP; Rhodes MJ; Fenwick GR
    Anal Biochem; 1984 Jun; 139(2):284-91. PubMed ID: 6476365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimization of a blanching step to maximize sulforaphane synthesis in broccoli florets.
    Pérez C; Barrientos H; Román J; Mahn A
    Food Chem; 2014 Feb; 145():264-71. PubMed ID: 24128476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impact of thermal processing on sulforaphane yield from broccoli ( Brassica oleracea L. ssp. italica).
    Wang GC; Farnham M; Jeffery EH
    J Agric Food Chem; 2012 Jul; 60(27):6743-8. PubMed ID: 22471240
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epithiospecifier protein activity in broccoli: the link between terminal alkenyl glucosinolates and sulphoraphane nitrile.
    Williams DJ; Critchley C; Pun S; Nottingham S; O'Hare TJ
    Phytochemistry; 2008 Nov; 69(16):2765-73. PubMed ID: 18977005
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broccoli Myrosinase cDNA Expression in
    Curiqueo C; Mahn A; Castillo A
    Biomolecules; 2022 Jan; 12(2):. PubMed ID: 35204734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.