These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1071675)

  • 1. Effects of noradrenaline on consecutive vascular segments at low or normal calcium concentrations in control and spontaneously hypertensive rats.
    Folkow B; Hallbäck M; Jones JV; Sutter M
    Clin Sci Mol Med Suppl; 1976 Dec; 3():53s-55s. PubMed ID: 1071675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dependence on external calcium for the noradrenaline contractility of the resistance vessels in spontaneously hypertensive and renal hypertensive rats, as compared with normotensive controls.
    Folkow B; Hallbäck M; Jones JV; Sutter M
    Acta Physiol Scand; 1977 Sep; 101(1):84-97. PubMed ID: 906865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are isolated femoral resistance vessels or tail arteries good models for the hindquarter vasculature of spontaneously hypertensive rats?
    Mulvany MJ; Nilsson H; Nyborg N; Mikkelsen E
    Acta Physiol Scand; 1982 Nov; 116(3):275-83. PubMed ID: 7168356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile responses to noradrenaline: varying dependence on external calcium of consecutive vascular segments of perfused rat hindquarters.
    Sutter MC; Hallbäck M; Jones JV; Folkow B
    Acta Physiol Scand; 1977 Feb; 99(2):166-72. PubMed ID: 842373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium sensitivity and agonist-induced calcium sensitization in small arteries of young and adult spontaneously hypertensive rats.
    Shaw LM; Ohanian J; Heagerty AM
    Hypertension; 1997 Sep; 30(3 Pt 1):442-8. PubMed ID: 9314430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An increased calcium sensitivity of mesenteric resistance vessels in young and adult spontaneously hypertensive rats.
    Mulvany MJ; Nyborg N
    Br J Pharmacol; 1980; 71(2):585-96. PubMed ID: 7470763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct evidence that the greater contractility of resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a thickened media, and an increased number of smooth muscle cell layers.
    Mulvany MJ; Hansen OK; Aalkjaer C
    Circ Res; 1978 Dec; 43(6):854-64. PubMed ID: 709747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased calcium sensitivity in isolated resistance arteries from spontaneously hypertensive rats: effects of dihydropyridines.
    Boonen HC; De Mey JG
    Eur J Pharmacol; 1990 Apr; 179(3):403-12. PubMed ID: 1694767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vascular flow capacity of hindlimb skeletal muscles in spontaneously hypertensive rats.
    Sexton WL; Korthuis RJ; Laughlin MH
    J Appl Physiol (1985); 1990 Sep; 69(3):1073-9. PubMed ID: 2246155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial smooth muscle contractions in spontaneously hypertensive rats on a high-calcium diet.
    Pörsti I
    J Hypertens; 1992 Mar; 10(3):255-63. PubMed ID: 1315823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Responses to noradrenaline of tail arteries in hypertensive, hypotensive and normotensive rats under different regimens of perfusion: role of the myogenic response.
    Machkov VV; Vlasova MA; Tarasova OS; Mikhaleva LM; Koshelev VB; Timin EN; Rodionov IM
    Acta Physiol Scand; 1998 Aug; 163(4):331-7. PubMed ID: 9789576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of endothelium on the effects of neuropeptide Y in mesenteric resistance arteries of spontaneously hypertensive and Wistar-Kyoto normotensive rats.
    Andriantsitohaina R; Stoclet JC; Bukoski RD
    J Pharmacol Exp Ther; 1991 Apr; 257(1):276-81. PubMed ID: 2019991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angiotensin blockade or calcium antagonists improve endothelial dysfunction in hypertension: studies in perfused mesenteric resistance arteries.
    Dohi Y; Criscione L; Pfeiffer K; Lüscher TF
    J Cardiovasc Pharmacol; 1994 Sep; 24(3):372-9. PubMed ID: 7528292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced effects of endothelium-derived hyperpolarizing factor in ocular ciliary arteries from spontaneous hypertensive rats.
    Dong Y; Watabe H; Cui J; Abe S; Sato N; Ishikawa H; Yoshitomi T
    Exp Eye Res; 2010 Feb; 90(2):324-9. PubMed ID: 19941853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction between noradrenaline and ATP upon polyphosphoinositide metabolism and contraction in tail arteries from normo- and hypertensive rats.
    Guild SB; Jenkinson S; Muir TC
    J Pharm Pharmacol; 1992 Oct; 44(10):836-40. PubMed ID: 1360510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sodium-potassium-dependent ATPase inhibition on noradrenaline-activated calcium sensitivity of mesenteric resistance vessels in adult spontaneously hypertensive rats.
    Mulvany MJ; Nyborg N; Nilsson H
    Clin Sci (Lond); 1980 Dec; 59 Suppl 6():203s-205s. PubMed ID: 6256114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations and otherwise between blood pressure, cardiac mass and resistance vessel characteristics in hypertensive, normotensive and hypertensive/normotensive hybrid rats.
    Mulvany MJ; Korsgaard N
    J Hypertens; 1983 Oct; 1(3):235-44. PubMed ID: 6241623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial contractions induced by cumulative addition of calcium in hypertensive and normotensive rats: influence of endothelium.
    Kähönen M; Arvola P; Wu X; Pörsti I
    Naunyn Schmiedebergs Arch Pharmacol; 1994 Jun; 349(6):627-36. PubMed ID: 7969514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Mechanisms of the increased resistance to blood flow in the spontaneously hypertensive rat].
    Pinelis VG; Kozlov AV; Vakulina TP; Markov KhM
    Kardiologiia; 1983 May; 23(5):66-72. PubMed ID: 6876552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic consequences of resistance vessel rarification and of changes in smooth muscle sensitivity.
    Hallbäck M; Göthberg G; Lundin S; Ricksten SE; Folkow B
    Acta Physiol Scand; 1976 Jun; 97(2):233-40. PubMed ID: 949008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.