These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 10717642)

  • 1. Patterns of calretinin, calbindin, and tyrosine-hydroxylase expression are consistent with the prosomeric map of the frog diencephalon.
    Milán FJ; Puelles L
    J Comp Neurol; 2000 Mar; 419(1):96-121. PubMed ID: 10717642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anuran dorsal column nucleus: organization, immunohistochemical characterization, and fiber connections in Rana perezi and Xenopus laevis.
    Muñoz A; Muñoz M; González A; Ten Donkelaar HJ
    J Comp Neurol; 1995 Dec; 363(2):197-220. PubMed ID: 8642070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions.
    Morona R; González A
    J Comp Neurol; 2008 Nov; 511(2):187-220. PubMed ID: 18781620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prosomeric map of the lamprey forebrain based on calretinin immunocytochemistry, Nissl stain, and ancillary markers.
    Pombal MA; Puelles L
    J Comp Neurol; 1999 Nov; 414(3):391-422. PubMed ID: 10516604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) immunoreactivity in the central nervous system of two chondrostean fishes (Acipenser baeri and Huso huso).
    Adrio F; Anadón R; Rodríguez-Moldes I
    J Comp Neurol; 2002 Jul; 448(3):280-97. PubMed ID: 12115709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A segmental map of architectonic subdivisions in the diencephalon of the frog Rana perezi: acetylcholinesterase-histochemical observations.
    Puelles L; Javier Milán F; Martínez-de-la-Torre M
    Brain Behav Evol; 1996; 47(6):279-310. PubMed ID: 8796963
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis.
    Morona R; Moreno N; López JM; González A
    J Comp Neurol; 2006 Feb; 494(5):763-83. PubMed ID: 16374814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of calretinin and tyrosine hydroxylase-immunoreactive neurons in the pig retina.
    Jeon YK; Kim SY; Jeon CJ
    Mol Cells; 2001 Apr; 11(2):250-6. PubMed ID: 11355708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development.
    Morona R; González A
    J Comp Neurol; 2013 Jan; 521(1):79-108. PubMed ID: 22678695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyto- and chemoarchitecture of the hypothalamus of a wallaby ( Macropus eugenii) with special emphasis on oxytocin and vasopressinergic neurons.
    Cheng G; Marotte LR; Ashwell KW
    Anat Embryol (Berl); 2003 Oct; 207(3):233-53. PubMed ID: 14513376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholaminergic innervation of the septum in the frog: a combined immunohistochemical and tract-tracing study.
    Sánchez-Camacho C; Peña JJ; González A
    J Comp Neurol; 2003 Jan; 455(3):310-23. PubMed ID: 12483684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of calcium-binding proteins in the diencephalon of the lizard Psammodromus algirus.
    Dávila JC; Guirado S; Puelles L
    J Comp Neurol; 2000 Nov; 427(1):67-92. PubMed ID: 11042592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An immunohistochemical study of the telencephalon and the diencephalon in a Myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti.
    Wicht H; Northcutt RG
    Brain Behav Evol; 1994; 43(3):140-61. PubMed ID: 7514941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians.
    Morona R; González A
    J Comp Neurol; 2009 Aug; 515(5):503-37. PubMed ID: 19479990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of tyrosine hydroxylase-immunoreactive systems in the brain of the larval lamprey Lampetra fluviatilis.
    Pierre-Simons J; Repérant J; Mahouche M; Ward R
    J Comp Neurol; 2002 May; 447(2):163-76. PubMed ID: 11977119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calbindin D-28K-immunoreactivity in the cat diencephalon: an immunocytochemical study.
    Coveñas R; De León M; Narváez JA; Aguirre JA; González-Barón S
    Arch Ital Biol; 1995 Oct; 133(4):263-72. PubMed ID: 8849317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and connectivity of the lateral amygdala in anuran amphibians.
    Moreno N; González A
    J Comp Neurol; 2004 Nov; 479(2):130-48. PubMed ID: 15452828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of the human nucleus of the solitary tract: a cyto- and chemoarchitectural study.
    Cheng G; Zhu H; Zhou X; Qu J; Ashwell KW; Paxinos G
    Auton Neurosci; 2006 Jul; 128(1-2):76-95. PubMed ID: 16720106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calbindin and calretinin immunoreactivities identify different types of neurons in the adult lamprey spinal cord.
    Megías M; Alvarez-Otero R; Pombal MA
    J Comp Neurol; 2003 Jan; 455(1):72-85. PubMed ID: 12454997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis.
    Boyd JD; Delaney KR
    J Comp Neurol; 2002 Dec; 454(1):42-57. PubMed ID: 12410617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.