BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10718144)

  • 21. Predicting dose-volume histograms for organs-at-risk in IMRT planning.
    Appenzoller LM; Michalski JM; Thorstad WL; Mutic S; Moore KL
    Med Phys; 2012 Dec; 39(12):7446-61. PubMed ID: 23231294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of tumour control probability in hypoxic tumours by radiation dose redistribution: a modelling study.
    Søvik A; Malinen E; Bruland ØS; Bentzen SM; Olsen DR
    Phys Med Biol; 2007 Jan; 52(2):499-513. PubMed ID: 17202629
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adapting radiotherapy to hypoxic tumours.
    Malinen E; Søvik A; Hristov D; Bruland ØS; Olsen DR
    Phys Med Biol; 2006 Oct; 51(19):4903-21. PubMed ID: 16985278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct measurement of intratumor dose-rate distributions in experimental xenografts treated with 90Y-labeled radioimmunotherapy.
    Mayer R; Dillehay LE; Shao Y; Zhang YG; Song S; Bartholomew RM; Mackenson DG; Williams JR
    Int J Radiat Oncol Biol Phys; 1995 Apr; 32(1):147-57. PubMed ID: 7721611
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The impact of microscopic disease on the tumor control probability in non-small-cell lung cancer.
    Siedschlag C; Boersma L; van Loon J; Rossi M; van Baardwijk A; Gilhuijs K; Stroom J
    Radiother Oncol; 2011 Sep; 100(3):344-50. PubMed ID: 21955665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect.
    Song W; Battista J; Van Dyk J
    Med Phys; 2004 Nov; 31(11):3034-45. PubMed ID: 15587657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dose-volume conundrum for response of prostate cancer to brachytherapy: summary dosimetric measures and their relationship to tumor control probability.
    D'Souza WD; Thames HD; Kuban DA
    Int J Radiat Oncol Biol Phys; 2004 Apr; 58(5):1540-8. PubMed ID: 15050335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential implications of the bystander effect on TCP and EUD when considering target volume dose heterogeneity.
    Balderson MJ; Kirkby C
    Int J Radiat Biol; 2015 Jan; 91(1):54-61. PubMed ID: 25004946
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mathematical approach for evaluating the influence of dose heterogeneity on TCP for prostate cancer brachytherapy treatment.
    Strigari L; Orlandini LC; Andriani I; d'Angelo A; Stefanacci M; Di Nallo AM; Benassi M
    Phys Med Biol; 2008 Sep; 53(18):5045-59. PubMed ID: 18723926
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coverage optimized planning: probabilistic treatment planning based on dose coverage histogram criteria.
    Gordon JJ; Sayah N; Weiss E; Siebers JV
    Med Phys; 2010 Feb; 37(2):550-63. PubMed ID: 20229863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of MLC leaf width on biologically adapted IMRT plans.
    Rødal J; Søvik A; Malinen E
    Acta Oncol; 2010 Oct; 49(7):1116-23. PubMed ID: 20831503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Theoretical study of the influence of a heterogeneous activity distribution on intratumoral absorbed dose distribution.
    Bao A; Zhao X; Phillips WT; Woolley FR; Otto RA; Goins B; Hevezi JM
    Med Phys; 2005 Jan; 32(1):200-8. PubMed ID: 15719971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Do We Preserve Tumor Control Probability (TCP) in FLASH Radiotherapy? A Model-Based Analysis.
    Liew H; Mein S; Tessonnier T; Abdollahi A; Debus J; Dokic I; Mairani A
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biological effect of different IMRT delivery techniques: SMLC, DMLC, and helical tomotherapy.
    Shaikh M; Burmeister J; Joiner M; Pandya S; Zhao B; Liu Q
    Med Phys; 2010 Feb; 37(2):762-70. PubMed ID: 20229886
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective boosting of tumor subvolumes.
    Tomé WA; Fowler JF
    Int J Radiat Oncol Biol Phys; 2000 Sep; 48(2):593-9. PubMed ID: 10974480
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Analysis of fractionation correction methodologies for multiple phase treatment plans in radiation therapy.
    Mavroidis P; Ferreira BC; Papanikolaou N; Lopes Mdo C
    Med Phys; 2013 Mar; 40(3):031715. PubMed ID: 23464310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of adaptive radiotherapy of bladder cancer by image-based tumour control probability modelling.
    Wright P; Muren LP; Høyer M; Malinen E
    Acta Oncol; 2010 Oct; 49(7):1045-51. PubMed ID: 20831494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiobiological impact of dose calculation algorithms on biologically optimized IMRT lung stereotactic body radiation therapy plans.
    Liang X; Penagaricano J; Zheng D; Morrill S; Zhang X; Corry P; Griffin RJ; Han EY; Hardee M; Ratanatharathom V
    Radiat Oncol; 2016 Jan; 11():10. PubMed ID: 26800883
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isotope selection for permanent prostate implants? An evaluation of 103Pd versus 125I based on radiobiological effectiveness and dosimetry.
    Dicker AP; Lin CC; Leeper DB; Waterman FM
    Semin Urol Oncol; 2000 May; 18(2):152-9. PubMed ID: 10875458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of dose heterogeneity on tumour control probability in fractionated radiation therapy.
    Wiklund K; Toma-Dasu I; Lind BK
    Phys Med Biol; 2011 Dec; 56(23):7585-600. PubMed ID: 22086189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.