BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 10718581)

  • 1. Classifying environmental pollutants: Part 3. External validation of the classification system.
    Verhaar HJ; Solbé J; Speksnijder J; van Leeuwen CJ; Hermens JL
    Chemosphere; 2000 Apr; 40(8):875-83. PubMed ID: 10718581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
    Nendza M; Wenzel A
    Environ Sci Pollut Res Int; 2006 May; 13(3):192-203. PubMed ID: 16758710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acute toxicity value extrapolation with fish and aquatic invertebrates.
    Buckler DR; Mayer FL; Ellersieck MR; Asfaw A
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):546-58. PubMed ID: 16205993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish.
    Claeys L; Iaccino F; Janssen CR; Van Sprang P; Verdonck F
    Environ Toxicol Chem; 2013 Oct; 32(10):2217-25. PubMed ID: 23775559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of baseline toxicants for QSAR predictions to replace fish acute toxicity studies.
    Nendza M; Müller M; Wenzel A
    Environ Sci Process Impacts; 2017 Mar; 19(3):429-437. PubMed ID: 28165522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target site model: Predicting mode of action and aquatic organism acute toxicity using Abraham parameters and feature-weighted k-nearest neighbors classification.
    Boone KS; Di Toro DM
    Environ Toxicol Chem; 2019 Feb; 38(2):375-386. PubMed ID: 30506854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative analysis of pharmaceuticals versus industrial chemicals acute aquatic toxicity classification according to the United Nations classification system for chemicals. Assessment of the (Q)SAR predictability of pharmaceuticals acute aquatic toxicity and their predominant acute toxic mode-of-action.
    Sanderson H; Thomsen M
    Toxicol Lett; 2009 Jun; 187(2):84-93. PubMed ID: 19429249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment.
    McKim JM; Bradbury SP; Niemi GJ
    Environ Health Perspect; 1987 Apr; 71():171-86. PubMed ID: 3297660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Statistical evaluation of chronic toxicity data on aquatic organisms for the hazard identification: the chemicals toxicity distribution approach.
    González-Doncel M; Ortiz J; Izquierdo JJ; Martín B; Sánchez P; Tarazona JV
    Chemosphere; 2006 May; 63(5):835-44. PubMed ID: 16169042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discriminating toxicant classes by mode of action: 4. Baseline and excess toxicity.
    Nendza M; Müller M; Wenzel A
    SAR QSAR Environ Res; 2014; 25(5):393-405. PubMed ID: 24773472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data quality and relevance in ecotoxicity: The undocumented influences of model assumptions and modifying factors on aquatic toxicity dose metrics.
    McCarty LS
    Regul Toxicol Pharmacol; 2015 Nov; 73(2):552-61. PubMed ID: 26343167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ECOSAR model performance with a large test set of industrial chemicals.
    Reuschenbach P; Silvani M; Dammann M; Warnecke D; Knacker T
    Chemosphere; 2008 May; 71(10):1986-95. PubMed ID: 18262586
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro assessment of modes of toxic action of pharmaceuticals in aquatic life.
    Escher BI; Bramaz N; Eggen RI; Richter M
    Environ Sci Technol; 2005 May; 39(9):3090-100. PubMed ID: 15926557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophiles and acute toxicity to fish.
    Hermens JL
    Environ Health Perspect; 1990 Jul; 87():219-25. PubMed ID: 2269228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the integrated testing strategy for PNEC derivation under REACH.
    May M; Drost W; Germer S; Juffernholz T; Hahn S
    Regul Toxicol Pharmacol; 2016 Jul; 78():59-65. PubMed ID: 27103318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fish toxicity tests with mixtures of more than two chemicals: a proposal for a quantitative approach and experimental results.
    Könemann H
    Toxicology; 1981; 19(3):229-38. PubMed ID: 7233447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Joint toxicity of mixtures of groups of organic aquatic pollutants to the guppy (Poecilia reticulata).
    Hermens J; Leeuwangh P; Musch A
    Ecotoxicol Environ Saf; 1985 Jun; 9(3):321-6. PubMed ID: 4006831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of QSARs in risk management of existing chemicals.
    Verhaar HJ; van Leeuwen CJ; Bol J; Hermens JL
    SAR QSAR Environ Res; 1994; 2(1-2):39-58. PubMed ID: 8790639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.