BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10718748)

  • 21. Bile acids inhibit human purinergic receptor P2X4 in a heterologous expression system.
    Ilyaskin AV; Sure F; Nesterov V; Haerteis S; Korbmacher C
    J Gen Physiol; 2019 Jun; 151(6):820-833. PubMed ID: 30988062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Contribution of conserved glycine residues to ATP action at human P2X1 receptors: mutagenesis indicates that the glycine at position 250 is important for channel function.
    Digby HR; Roberts JA; Sutcliffe MJ; Evans RJ
    J Neurochem; 2005 Dec; 95(6):1746-54. PubMed ID: 16236030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular ATP-stimulated current in wild-type and P2X4 receptor transgenic mouse ventricular myocytes: implications for a cardiac physiologic role of P2X4 receptors.
    Shen JB; Pappano AJ; Liang BT
    FASEB J; 2006 Feb; 20(2):277-84. PubMed ID: 16449800
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional evidence of distinct ATP activation sites at the human P2X(7) receptor.
    Klapperstück M; Büttner C; Schmalzing G; Markwardt F
    J Physiol; 2001 Jul; 534(Pt 1):25-35. PubMed ID: 11432989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Characteristic and effect of cadmium on ATP-activated currents mediated by P2X4 receptors].
    Zhang YQ; Tian WH; Peng F; Xu Z; Nie YL
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2012 Sep; 28(5):430-4. PubMed ID: 23252297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Allosteric modulation of native cochlear P2X receptors: insights from comparison with recombinant P2X2 receptors.
    Kanjhan R; Raybould NP; Jagger DJ; Greenwood D; Housley GD
    Audiol Neurootol; 2003; 8(3):115-28. PubMed ID: 12679623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Neuromodulator role of zinc and copper during prolonged ATP applications to P2X4 purinoceptors.
    Coddou C; Morales B; Huidobro-Toro JP
    Eur J Pharmacol; 2003 Jul; 472(1-2):49-56. PubMed ID: 12860472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of P2X4 function by P2Y6 UDP receptors in microglia.
    Bernier LP; Ase AR; Boué-Grabot É; Séguéla P
    Glia; 2013 Dec; 61(12):2038-49. PubMed ID: 24123515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of neuroamines and divalent cations on cloned and mutated ATP-gated channels.
    Nakazawa K; Ohno Y
    Eur J Pharmacol; 1997 Apr; 325(1):101-8. PubMed ID: 9151945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Extracellular histidine residues identify common structural determinants in the copper/zinc P2X2 receptor modulation.
    Lorca RA; Coddou C; Gazitúa MC; Bull P; Arredondo C; Huidobro-Toro JP
    J Neurochem; 2005 Oct; 95(2):499-512. PubMed ID: 16190872
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH-dependent modulation of the cloned renal K+ channel, ROMK.
    McNicholas CM; MacGregor GG; Islas LD; Yang Y; Hebert SC; Giebisch G
    Am J Physiol; 1998 Dec; 275(6):F972-81. PubMed ID: 9843915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism for the effects of extracellular acidification on HERG-channel function.
    Jiang M; Dun W; Tseng GN
    Am J Physiol; 1999 Oct; 277(4):H1283-92. PubMed ID: 10516162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethanol sensitivity in ATP-gated P2X receptors is subunit dependent.
    Davies DL; Machu TK; Guo Y; Alkana RL
    Alcohol Clin Exp Res; 2002 Jun; 26(6):773-8. PubMed ID: 12068244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Basolateral P2X4-like receptors regulate the extracellular ATP-stimulated epithelial Na+ channel activity in renal epithelia.
    Zhang Y; Sanchez D; Gorelik J; Klenerman D; Lab M; Edwards C; Korchev Y
    Am J Physiol Renal Physiol; 2007 Jun; 292(6):F1734-40. PubMed ID: 17356127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The human P2X4 receptor gene is alternatively spliced.
    Dhulipala PD; Wang YX; Kotlikoff MI
    Gene; 1998 Jan; 207(2):259-66. PubMed ID: 9511769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of the pH sensitivity of human P2X receptors by N-linked glycosylation.
    Wirkner K; Stanchev D; Milius D; Hartmann L; Kato E; Zadori ZS; Mager PP; Rubini P; Nörenberg W; Illes P
    J Neurochem; 2008 Dec; 107(5):1216-24. PubMed ID: 18778308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary structure and gating rearrangements of transmembrane segments in rat P2X4 receptor channels.
    Silberberg SD; Chang TH; Swartz KJ
    J Gen Physiol; 2005 Apr; 125(4):347-59. PubMed ID: 15795310
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Involvement of the left-flipper-to-dorsal-fin interface of the zebrafish P2X4 receptor in ATP binding and structural rearrangement.
    Jie Y; Zhang L; Xu H; Gao C; Ma W; Li Z
    Neurosci Lett; 2014 Oct; 582():1-5. PubMed ID: 25175421
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A C-terminal lysine that controls human P2X4 receptor desensitization.
    Fountain SJ; North RA
    J Biol Chem; 2006 Jun; 281(22):15044-9. PubMed ID: 16533808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical and functional evidence for heteromeric assembly of P2X1 and P2X4 subunits.
    Nicke A; Kerschensteiner D; Soto F
    J Neurochem; 2005 Feb; 92(4):925-33. PubMed ID: 15686495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.