These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 10719271)

  • 1. Methods for analysis of Ca(2+)/H(+) antiport activity in synaptic vesicles isolated from sheep brain cortex.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Brain Res Brain Res Protoc; 2000 Feb; 5(1):102-8. PubMed ID: 10719271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic vesicle Ca2+/H+ antiport: dependence on the proton electrochemical gradient.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Brain Res Mol Brain Res; 1999 Aug; 71(2):178-84. PubMed ID: 10521572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinction between Ca(2+) pump and Ca(2+)/H(+) antiport activities in synaptic vesicles of sheep brain cortex.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Neurochem Int; 2000 Oct; 37(4):387-96. PubMed ID: 10825579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Brain Res Mol Brain Res; 1999 Apr; 67(2):283-91. PubMed ID: 10216226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca2+-H+ antiport activity in synaptic vesicles isolated from sheep brain cortex.
    Gonçalves PP; Meireles SM; Gravato C; Vale MG
    Neurosci Lett; 1998 May; 247(2-3):87-90. PubMed ID: 9655599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptotagmin 1 is required for vesicular Ca²⁺/H⁺-antiport activity.
    Cordeiro JM; Boda B; Gonçalves PP; Dunant Y
    J Neurochem; 2013 Jul; 126(1):37-46. PubMed ID: 23607712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptic vesicles control the time course of neurotransmitter secretion via a Ca²+/H+ antiport.
    Cordeiro J; Gonçalves PP; Dunant Y
    J Physiol; 2011 Jan; 589(Pt 1):149-67. PubMed ID: 21059764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A vacuolar-type proton pump energizes K+/H+ antiport in an animal plasma membrane.
    Wieczorek H; Putzenlechner M; Zeiske W; Klein U
    J Biol Chem; 1991 Aug; 266(23):15340-7. PubMed ID: 1831202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+ sensitivity of synaptic vesicle dopamine, gamma-aminobutyric acid, and glutamate transport systems.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Neurochem Res; 2001 Jan; 26(1):75-81. PubMed ID: 11358285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The pH-sensitive dye acridine orange as a tool to monitor exocytosis/endocytosis in synaptosomes.
    Zoccarato F; Cavallini L; Alexandre A
    J Neurochem; 1999 Feb; 72(2):625-33. PubMed ID: 9930734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(2+) and H+ homeostasis in fission yeast: a role of Ca(2+)/H+ exchange and distinct V-H+-ATPases of the secretory pathway organelles.
    Okorokov LA; Silva FE; Okorokova Façanha AL
    FEBS Lett; 2001 Sep; 505(2):321-4. PubMed ID: 11566197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ pump and Ca2+/H+ antiporter in plasma membrane vesicles isolated by aqueous two-phase partitioning from corn leaves.
    Kasai M; Muto S
    J Membr Biol; 1990 Mar; 114(2):133-42. PubMed ID: 2160540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exocytosis, mediatophore, and vesicular Ca2+/H+ antiport in rapid neurotransmission.
    Dunant Y; Cordeiro JM; Gonçalves PP
    Ann N Y Acad Sci; 2009 Jan; 1152():100-12. PubMed ID: 19161381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. alpha-Latrotoxin affects mitochondrial potential and synaptic vesicle proton gradient of nerve terminals.
    Tarasenko AS; Storchak LG; Himmelreich NH
    Neurochem Int; 2008 Feb; 52(3):392-400. PubMed ID: 17728017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificially imposed electrical potentials drive L-glutamate uptake into synaptic vesicles of bovine cerebral cortex.
    Shioi J; Ueda T
    Biochem J; 1990 Apr; 267(1):63-8. PubMed ID: 1970243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate uptake occurs at an early stage of synaptic vesicle recycling.
    Prior IA; Clague MJ
    Curr Biol; 1997 May; 7(5):353-6. PubMed ID: 9115399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of plasma membrane calcium ATPases confers Ca
    Ono Y; Mori Y; Egashira Y; Sumiyama K; Takamori S
    Sci Rep; 2019 Mar; 9(1):4289. PubMed ID: 30862855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperforin inhibits vesicular uptake of monoamines by dissipating pH gradient across synaptic vesicle membrane.
    Roz N; Rehavi M
    Life Sci; 2003 Jun; 73(4):461-70. PubMed ID: 12759140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenylarsine oxide is able to dissipate synaptic vesicle acidic pool.
    Tarasenko AS; Kostrzhevska OG; Storchak LG; Linetska MV; Borisova TA; Himmelreich NH
    Neurochem Int; 2005 Jun; 46(7):541-50. PubMed ID: 15843048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy coupling of L-glutamate transport and vacuolar H(+)-ATPase in brain synaptic vesicles.
    Moriyama Y; Maeda M; Futai M
    J Biochem; 1990 Oct; 108(4):689-93. PubMed ID: 2149857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.