BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10719998)

  • 1. Two-dimensional finite element modelling of the neonatal head.
    Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2000 Feb; 21(1):45-52. PubMed ID: 10719998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-shell algorithm to reconstruct EIT images of brain function.
    Liston AD; Bayford RH; Tidswell AT; Holder DS
    Physiol Meas; 2002 Feb; 23(1):105-19. PubMed ID: 11876223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new head phantom with realistic shape and spatially varying skull resistivity distribution.
    Li JB; Tang C; Dai M; Liu G; Shi XT; Yang B; Xu CH; Fu F; You FS; Tang MX; Dong XZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):254-63. PubMed ID: 24196845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skull Modeling Effects in Conductivity Estimates Using Parametric Electrical Impedance Tomography.
    Fernandez-Corazza M; Turovets S; Luu P; Price N; Muravchik CH; Tucker D
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1785-1797. PubMed ID: 29989921
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography.
    Zhang J; Yang B; Li H; Fu F; Shi X; Dong X; Dai M
    Sci Rep; 2017 Jul; 7(1):4608. PubMed ID: 28676697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D simulation of EIT for monitoring impedance variations within the human head.
    Towers CM; McCann H; Wang M; Beatty PC; Pomfrett CJ; Beck MS
    Physiol Meas; 2000 Feb; 21(1):119-24. PubMed ID: 10720007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A realistic three dimensional FEM of the human head.
    Bonovas PM; Kyriacou GA; Sahalos JN
    Physiol Meas; 2001 Feb; 22(1):65-76. PubMed ID: 11236891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved EEG source analysis using low-resolution conductivity estimation in a four-compartment finite element head model.
    Lew S; Wolters CH; Anwander A; Makeig S; MacLeod RS
    Hum Brain Mapp; 2009 Sep; 30(9):2862-78. PubMed ID: 19117275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
    Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC
    Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of uncertainty in head tissue conductivity and complexity on EEG forward modeling in neonates.
    Azizollahi H; Aarabi A; Wallois F
    Hum Brain Mapp; 2016 Oct; 37(10):3604-22. PubMed ID: 27238749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental validation of a novel reconstruction algorithm for electrical impedance tomography based on backprojection of Lagrange multipliers.
    Bayford R; Hanquan Y; Boone K; Holder DS
    Physiol Meas; 1995 Aug; 16(3 Suppl A):A237-47. PubMed ID: 8528121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation.
    Bayford RH; Boone KG; Hanquan Y; Holder DS
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A49-57. PubMed ID: 9001602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solving the forward problem in electrical impedance tomography for the human head using IDEAS (integrated design engineering analysis software), a finite element modelling tool.
    Bayford RH; Gibson A; Tizzard A; Tidswell T; Holder DS
    Physiol Meas; 2001 Feb; 22(1):55-64. PubMed ID: 11236890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.
    Abascal JF; Arridge SR; Atkinson D; Horesh R; Fabrizi L; De Lucia M; Horesh L; Bayford RH; Holder DS
    Neuroimage; 2008 Nov; 43(2):258-68. PubMed ID: 18694835
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):177-85. PubMed ID: 11236878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image reconstruction incorporated with the skull inhomogeneity for electrical impedance tomography.
    Ni A; Dong X; Yang G; Fu F; Tang C
    Comput Med Imaging Graph; 2008 Jul; 32(5):409-15. PubMed ID: 18501557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the skull of low-birthweight neonates on applied potential tomography imaging of centralised resistivity changes.
    McArdle FJ; Brown BH; Pearse RG; Barber DC
    Clin Phys Physiol Meas; 1988; 9 Suppl A():55-60. PubMed ID: 3240651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of layers in imaging brain function using electrical impedance tomograghy.
    Liston AD; Bayford RH; Holder DS
    Physiol Meas; 2004 Feb; 25(1):143-58. PubMed ID: 15005312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neonatal lungs--can absolute lung resistivity be determined non-invasively?
    Brown BH; Primhak RA; Smallwood RH; Milnes P; Narracott AJ; Jackson MJ
    Med Biol Eng Comput; 2002 Jul; 40(4):388-94. PubMed ID: 12227624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.