These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10720007)

  • 1. 3D simulation of EIT for monitoring impedance variations within the human head.
    Towers CM; McCann H; Wang M; Beatty PC; Pomfrett CJ; Beck MS
    Physiol Meas; 2000 Feb; 21(1):119-24. PubMed ID: 10720007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of the positional accuracy of EIT images of the head using a Lagrange multiplier reconstruction algorithm with diametric excitation.
    Bayford RH; Boone KG; Hanquan Y; Holder DS
    Physiol Meas; 1996 Nov; 17 Suppl 4A():A49-57. PubMed ID: 9001602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-dimensional finite element modelling of the neonatal head.
    Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2000 Feb; 21(1):45-52. PubMed ID: 10719998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of head conductivity frequency response in vivo with optimized EIT-EEG.
    Dabek J; Kalogianni K; Rotgans E; van der Helm FCT; Kwakkel G; van Wegen EEH; Daffertshofer A; de Munck JC
    Neuroimage; 2016 Feb; 127():484-495. PubMed ID: 26589336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lobe based image reconstruction in Electrical Impedance Tomography.
    Schullcke B; Gong B; Krueger-Ziolek S; Tawhai M; Adler A; Mueller-Lisse U; Moeller K
    Med Phys; 2017 Feb; 44(2):426-436. PubMed ID: 28121374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel 3D-printed head phantom with anatomically realistic geometry and continuously varying skull resistivity distribution for electrical impedance tomography.
    Zhang J; Yang B; Li H; Fu F; Shi X; Dong X; Dai M
    Sci Rep; 2017 Jul; 7(1):4608. PubMed ID: 28676697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-shell algorithm to reconstruct EIT images of brain function.
    Liston AD; Bayford RH; Tidswell AT; Holder DS
    Physiol Meas; 2002 Feb; 23(1):105-19. PubMed ID: 11876223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A realistic three dimensional FEM of the human head.
    Bonovas PM; Kyriacou GA; Sahalos JN
    Physiol Meas; 2001 Feb; 22(1):65-76. PubMed ID: 11236891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a 3D reconstruction algorithm for EIT of human brain function in a realistic head-shaped tank.
    Tidswell AT; Gibson A; Bayford RH; Holder DS
    Physiol Meas; 2001 Feb; 22(1):177-85. PubMed ID: 11236878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitively Coupled Electrical Impedance Tomography for Brain Imaging.
    Jiang YD; Soleimani M
    IEEE Trans Med Imaging; 2019 Sep; 38(9):2104-2113. PubMed ID: 30703015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The application of electrical impedance tomography to reduce systematic errors in the EEG inverse problem--a simulation study.
    Gonçalves S; de Munck JC; Heethaar RM; Lopes da Silva FH; van Dijk BW
    Physiol Meas; 2000 Aug; 21(3):379-93. PubMed ID: 10984206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.
    De Marco T; Ries F; Guermandi M; Guerrieri R
    IEEE Trans Biomed Eng; 2012 May; 59(5):1229-39. PubMed ID: 22086487
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity Analysis Highlights the Importance of Accurate Head Models for Electrical Impedance Tomography Monitoring of Intracerebral Hemorrhagic Stroke.
    Paldanius A; Dekdouk B; Toivanen J; Kolehmainen V; Hyttinen J
    IEEE Trans Biomed Eng; 2022 Apr; 69(4):1491-1501. PubMed ID: 34665718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The boundary element method in the forward and inverse problem of electrical impedance tomography.
    de Munck JC; Faes TJ; Heethaar RM
    IEEE Trans Biomed Eng; 2000 Jun; 47(6):792-800. PubMed ID: 10833854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.
    Wagenaar J; Adler A
    Physiol Meas; 2016 Jun; 37(6):922-37. PubMed ID: 27203154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromagnetic impedance tomography (EMIT): a new method for impedance imaging.
    Levy S; Adam D; Bresler Y
    IEEE Trans Med Imaging; 2002 Jun; 21(6):676-87. PubMed ID: 12166865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromagnetic field strength outside the human head due to impedance changes from neuronal depolarization.
    Ahadzi GM; Liston AD; Bayford RH; Holder DS
    Physiol Meas; 2004 Feb; 25(1):365-78. PubMed ID: 15005330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of layers in imaging brain function using electrical impedance tomograghy.
    Liston AD; Bayford RH; Holder DS
    Physiol Meas; 2004 Feb; 25(1):143-58. PubMed ID: 15005312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of errors in static electrical impedance tomography with adjacent and trigonometric current patterns.
    Kolehmainen V; Vauhkonen M; Karjalainen PA; Kaipio JP
    Physiol Meas; 1997 Nov; 18(4):289-303. PubMed ID: 9413863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical impedance tomography of human brain function using reconstruction algorithms based on the finite element method.
    Bagshaw AP; Liston AD; Bayford RH; Tizzard A; Gibson AP; Tidswell AT; Sparkes MK; Dehghani H; Binnie CD; Holder DS
    Neuroimage; 2003 Oct; 20(2):752-64. PubMed ID: 14568449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.