These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10720221)

  • 1. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. "Orthogonal" separations for reversed-phase liquid chromatography.
    Pellett J; Lukulay P; Mao Y; Bowen W; Reed R; Ma M; Munger RC; Dolan JW; Wrisley L; Medwid K; Toltl NP; Chan CC; Skibic M; Biswas K; Wells KA; Snyder LR
    J Chromatogr A; 2006 Jan; 1101(1-2):122-35. PubMed ID: 16236292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].
    Shan YC; Zhang YK; Zhao RH
    Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time III. Improving the accuracy of computer simulation.
    Dolan JW; Snyder LR; Wolcott RG; Haber P; Baczek T; Kaliszan R; Sander LC
    J Chromatogr A; 1999 Oct; 857(1-2):41-68. PubMed ID: 10536825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography.
    Rutan SC; Cash K; Stoll DR
    J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time I. Peak capacity limitations.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):1-20. PubMed ID: 10536823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversed-phase liquid chromatographic separation of complex samples by optimizing temperature and gradient time II. Two-run assay procedures.
    Dolan JW; Snyder LR; Djordjevic NM; Hill DW; Waeghe TJ
    J Chromatogr A; 1999 Oct; 857(1-2):21-39. PubMed ID: 10536824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphical Method for Choosing Optimized Conditions Given a Pump Pressure and a Particle Diameter in Liquid Chromatography.
    Groskreutz SR; Weber SG
    Anal Chem; 2016 Dec; 88(23):11742-11749. PubMed ID: 27790917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of a reversed-phase column (supelcosil LC-ABZ) under isocratic and gradient elution conditions for estimating octanol-water partition coefficients.
    Dias NC; Nawas MI; Poole CF
    Analyst; 2003 May; 128(5):427-33. PubMed ID: 12790192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2016 Nov; 1474():95-108. PubMed ID: 27836226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the behaviour of polydisperse polymers in liquid chromatography under isocratic and gradient conditions.
    Schoenmakers P; Fitzpatrick F; Grothey R
    J Chromatogr A; 2002 Aug; 965(1-2):93-107. PubMed ID: 12236541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns.
    Vyňuchalová K; Jandera P
    J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.
    Wiese S; Teutenberg T; Schmidt TC
    J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gradient elution in micellar liquid chromatography. I. Micelle concentration gradient.
    Madamba-Tan LS; Strasters JK; Khaledi MG
    J Chromatogr A; 1994 Oct; 683(2):321-34. PubMed ID: 7981837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns.
    Jandera P; Hájek T
    J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature.
    Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P
    Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.