These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 10720332)

  • 1. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex.
    Trachtenberg JT; Trepel C; Stryker MP
    Science; 2000 Mar; 287(5460):2029-32. PubMed ID: 10720332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term Monocular Deprivation during Juvenile Critical Period Disrupts Binocular Integration in Mouse Visual Thalamus.
    Huh CYL; Abdelaal K; Salinas KJ; Gu D; Zeitoun J; Figueroa Velez DX; Peach JP; Fowlkes CC; Gandhi SP
    J Neurosci; 2020 Jan; 40(3):585-604. PubMed ID: 31767678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain-derived neurotrophic factor expands ocular dominance columns in visual cortex in monocularly deprived and nondeprived kittens but does not in adult cats.
    Hata Y; Ohshima M; Ichisaka S; Wakita M; Fukuda M; Tsumoto T
    J Neurosci; 2000 Feb; 20(3):RC57. PubMed ID: 10648732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perspectives: neuroscience. Strengthening visual connections.
    Cynader M
    Science; 2000 Mar; 287(5460):1943-4. PubMed ID: 10755946
    [No Abstract]   [Full Text] [Related]  

  • 6. Anatomical correlates of functional plasticity in mouse visual cortex.
    Antonini A; Fagiolini M; Stryker MP
    J Neurosci; 1999 Jun; 19(11):4388-406. PubMed ID: 10341241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex.
    Hata Y; Stryker MP
    Science; 1994 Sep; 265(5179):1732-5. PubMed ID: 8085163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological changes in the geniculocortical pathway associated with monocular deprivation.
    Tieman SB
    Ann N Y Acad Sci; 1991; 627():212-30. PubMed ID: 1679310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery from effects of brief monocular deprivation in the kitten.
    Malach R; Ebert R; Van Sluyters RC
    J Neurophysiol; 1984 Mar; 51(3):538-51. PubMed ID: 6699677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid anatomical plasticity of horizontal connections in the developing visual cortex.
    Trachtenberg JT; Stryker MP
    J Neurosci; 2001 May; 21(10):3476-82. PubMed ID: 11331376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
    Jaepel J; Hübener M; Bonhoeffer T; Rose T
    Nat Neurosci; 2017 Dec; 20(12):1708-1714. PubMed ID: 29184207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus for rapid ocular dominance plasticity in visual cortex.
    Rittenhouse CD; Siegler BA; Voelker CC; Shouval HZ; Paradiso MA; Bear MF
    J Neurophysiol; 2006 May; 95(5):2947-50. PubMed ID: 16481452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laminar differences in plasticity in area 17 following retinal lesions in kittens or adult cats.
    Waleszczyk WJ; Wang C; Young JM; Burke W; Calford MB; Dreher B
    Eur J Neurosci; 2003 Jun; 17(11):2351-68. PubMed ID: 12814367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery from monocular deprivation in the monkey. III. Reversal of anatomical effects in the visual cortex.
    Swindale NV; Vital-Durand F; Blakemore C
    Proc R Soc Lond B Biol Sci; 1981 Nov; 213(1193):435-50. PubMed ID: 6119690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and experimental studies of relationship between pinwheel centers and ocular dominance columns in the visual cortex.
    Nakagama H; Tani T; Tanaka S
    Neurosci Res; 2006 Aug; 55(4):370-82. PubMed ID: 16780978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between the ocular dominance and orientation maps in visual cortex of monocularly deprived cats.
    Crair MC; Ruthazer ES; Gillespie DC; Stryker MP
    Neuron; 1997 Aug; 19(2):307-18. PubMed ID: 9292721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experience-dependent structural plasticity at pre- and postsynaptic sites of layer 2/3 cells in developing visual cortex.
    Sun YJ; Espinosa JS; Hoseini MS; Stryker MP
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21812-21820. PubMed ID: 31591211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.