BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

883 related articles for article (PubMed ID: 10720420)

  • 1. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    Kantor PF; Lucien A; Kozak R; Lopaschuk GD
    Circ Res; 2000 Mar; 86(5):580-8. PubMed ID: 10720420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial effects of trimetazidine in ex vivo working ischemic hearts are due to a stimulation of glucose oxidation secondary to inhibition of long-chain 3-ketoacyl coenzyme a thiolase.
    Lopaschuk GD; Barr R; Thomas PD; Dyck JR
    Circ Res; 2003 Aug; 93(3):e33-7. PubMed ID: 12869392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of chronic trimetazidine treatment on mechanical function and fatty acid oxidation in diabetic rat hearts.
    Onay-Besikci A; Guner S; Arioglu E; Ozakca I; Ozcelikay AT; Altan VM
    Can J Physiol Pharmacol; 2007 May; 85(5):527-35. PubMed ID: 17632588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase.
    MacInnes A; Fairman DA; Binding P; Rhodes Ja; Wyatt MJ; Phelan A; Haddock PS; Karran EH
    Circ Res; 2003 Aug; 93(3):e26-32. PubMed ID: 12869391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carnitine stimulation of glucose oxidation in the fatty acid perfused isolated working rat heart.
    Broderick TL; Quinney HA; Lopaschuk GD
    J Biol Chem; 1992 Feb; 267(6):3758-63. PubMed ID: 1740427
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ranolazine stimulates glucose oxidation in normoxic, ischemic, and reperfused ischemic rat hearts.
    McCormack JG; Barr RL; Wolff AA; Lopaschuk GD
    Circulation; 1996 Jan; 93(1):135-42. PubMed ID: 8616920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demand-induced ischemia in volume expanded isolated rat heart; the effect of dichloroacetate and trimetazidine.
    Skierczynska A; Beresewicz A
    J Physiol Pharmacol; 2010 Apr; 61(2):153-62. PubMed ID: 20436215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium regulation of glycolysis, glucose oxidation, and fatty acid oxidation in the aerobic and ischemic heart.
    Schönekess BO; Brindley PG; Lopaschuk GD
    Can J Physiol Pharmacol; 1995 Nov; 73(11):1632-40. PubMed ID: 8789418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation.
    Broderick TL; Quinney HA; Barker CC; Lopaschuk GD
    Circulation; 1993 Mar; 87(3):972-81. PubMed ID: 8443916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trimetazidine normalizes postischemic function of hypertrophied rat hearts.
    Saeedi R; Grist M; Wambolt RB; Bescond-Jacquet A; Lucien A; Allard MF
    J Pharmacol Exp Ther; 2005 Jul; 314(1):446-54. PubMed ID: 15840766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts.
    Lopaschuk GD; Wambolt RB; Barr RL
    J Pharmacol Exp Ther; 1993 Jan; 264(1):135-44. PubMed ID: 8380856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of malonyl-CoA decarboxylase to the high fatty acid oxidation rates seen in the diabetic heart.
    Sakamoto J; Barr RL; Kavanagh KM; Lopaschuk GD
    Am J Physiol Heart Circ Physiol; 2000 Apr; 278(4):H1196-204. PubMed ID: 10749714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment with the 3-ketoacyl-CoA thiolase inhibitor trimetazidine does not exacerbate whole-body insulin resistance in obese mice.
    Ussher JR; Keung W; Fillmore N; Koves TR; Mori J; Zhang L; Lopaschuk DG; Ilkayeva OR; Wagg CS; Jaswal JS; Muoio DM; Lopaschuk GD
    J Pharmacol Exp Ther; 2014 Jun; 349(3):487-96. PubMed ID: 24700885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic energy metabolism in diabetes: therapeutic implications.
    Pogatsa G
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S29-33. PubMed ID: 11286305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing cardiac energy metabolism: how can fatty acid and carbohydrate metabolism be manipulated?
    Lopaschuk GD
    Coron Artery Dis; 2001 Feb; 12 Suppl 1():S8-11. PubMed ID: 11286307
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts.
    Liu Q; Clanachan AS; Lopaschuk GD
    Am J Physiol; 1998 Sep; 275(3):E392-9. PubMed ID: 9725804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic therapy in the treatment of ischaemic heart disease: the pharmacology of trimetazidine.
    Stanley WC; Marzilli M
    Fundam Clin Pharmacol; 2003 Apr; 17(2):133-45. PubMed ID: 12667223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase.
    Kudo N; Barr AJ; Barr RL; Desai S; Lopaschuk GD
    J Biol Chem; 1995 Jul; 270(29):17513-20. PubMed ID: 7615556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for peroxisome proliferator-activated receptor alpha (PPARalpha ) in the control of cardiac malonyl-CoA levels: reduced fatty acid oxidation rates and increased glucose oxidation rates in the hearts of mice lacking PPARalpha are associated with higher concentrations of malonyl-CoA and reduced expression of malonyl-CoA decarboxylase.
    Campbell FM; Kozak R; Wagner A; Altarejos JY; Dyck JR; Belke DD; Severson DL; Kelly DP; Lopaschuk GD
    J Biol Chem; 2002 Feb; 277(6):4098-103. PubMed ID: 11734553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.