These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 10720437)

  • 1. Amino acid homologies between human biotinidase and bacterial aliphatic amidases: putative identification of the active site of biotinidase.
    Swango KL; Hymes J; Brown P; Wolf B
    Mol Genet Metab; 2000 Feb; 69(2):111-5. PubMed ID: 10720437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation of biotindase in mammals and identification of the putative biotinidase gene in Drosophila melanogaster.
    Swango KL; Wolf B
    Mol Genet Metab; 2001 Dec; 74(4):492-9. PubMed ID: 11749055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolutionary conservation of biotinidase: implications for the enzyme's structure and subcellular localization.
    Wolf B; Jensen K
    Mol Genet Metab; 2005; 86(1-2):44-50. PubMed ID: 16150625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism.
    Novo C; Tata R; Clemente A; Brown PR
    FEBS Lett; 1995 Jul; 367(3):275-9. PubMed ID: 7607322
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three dimensional structure of human biotinidase: computer modeling and functional correlations.
    Pindolia K; Jensen K; Wolf B
    Mol Genet Metab; 2007; 92(1-2):13-22. PubMed ID: 17629531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Examination of the signal peptide region of human biotinidase using a baculovirus expression system.
    Norrgard KJ; Hymes J; Wolf B
    Mol Genet Metab; 2000 Jan; 69(1):56-63. PubMed ID: 10655158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of mutations causing biotinidase deficiency.
    Pindolia K; Jordan M; Wolf B
    Hum Mutat; 2010 Sep; 31(9):983-91. PubMed ID: 20556795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation in a putative glycosylation site (N489T) of biotinidase in the only known Japanese child with biotinidase deficiency.
    Pomponio RJ; Yamaguchi A; Arashima S; Hymes J; Wolf B
    Mol Genet Metab; 1998 Jun; 64(2):152-4. PubMed ID: 9705240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support for a three-dimensional structure predicting a Cys-Glu-Lys catalytic triad for Pseudomonas aeruginosa amidase comes from site-directed mutagenesis and mutations altering substrate specificity.
    Novo C; Farnaud S; Tata R; Clemente A; Brown PR
    Biochem J; 2002 Aug; 365(Pt 3):731-8. PubMed ID: 11955282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new family of carbon-nitrogen hydrolases.
    Bork P; Koonin EV
    Protein Sci; 1994 Aug; 3(8):1344-6. PubMed ID: 7987228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis amidase 1, a member of the amidase signature family.
    Neu D; Lehmann T; Elleuche S; Pollmann S
    FEBS J; 2007 Jul; 274(13):3440-51. PubMed ID: 17555521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of the zinc binding ligands and the catalytic residue in human aspartoacylase, an enzyme involved in Canavan disease.
    Herga S; Berrin JG; Perrier J; Puigserver A; Giardina T
    FEBS Lett; 2006 Oct; 580(25):5899-904. PubMed ID: 17027983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent-stable Pseudomonas aeruginosa PseA protease gene: identification, molecular characterization, phylogenetic and bioinformatic analysis to study reasons for solvent stability.
    Gupta A; Ray S; Kapoor S; Khare SK
    J Mol Microbiol Biotechnol; 2008; 15(4):234-43. PubMed ID: 17715461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential genome analyses of metabolic enzymes in Pseudomonas aeruginosa for drug target identification.
    Perumal D; Lim CS; Sakharkar KR; Sakharkar MK
    In Silico Biol; 2007; 7(4-5):453-65. PubMed ID: 18391237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Klein J; Stolz A
    Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of creatininase reveal the substrate binding site and provide an insight into the catalytic mechanism.
    Yoshimoto T; Tanaka N; Kanada N; Inoue T; Nakajima Y; Haratake M; Nakamura KT; Xu Y; Ito K
    J Mol Biol; 2004 Mar; 337(2):399-416. PubMed ID: 15003455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure and site-directed mutagenesis studies of N-carbamoyl-D-amino-acid amidohydrolase from Agrobacterium radiobacter reveals a homotetramer and insight into a catalytic cleft.
    Wang WC; Hsu WH; Chien FT; Chen CY
    J Mol Biol; 2001 Feb; 306(2):251-61. PubMed ID: 11237598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the catalytic center of porcine aminoacylase 1 by site-directed mutagenesis, homology modeling and substrate docking.
    Liu Z; Zhen Z; Zuo Z; Wu Y; Liu A; Yi Q; Li W
    J Biochem; 2006 Mar; 139(3):421-30. PubMed ID: 16567407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of alternatively spliced human biotinidase mRNAs and putative localization of endogenous biotinidase.
    Stanley CM; Hymes J; Wolf B
    Mol Genet Metab; 2004 Apr; 81(4):300-12. PubMed ID: 15059618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of a transient covalent adduct formed during dimethylarginine dimethylaminohydrolase catalysis.
    Stone EM; Person MD; Costello NJ; Fast W
    Biochemistry; 2005 May; 44(18):7069-78. PubMed ID: 15865451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.