BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10720678)

  • 1. Technique for producing a carbon-fibre microelectrode with the fine recording tip.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 2000 Mar; 96(2):143-6. PubMed ID: 10720678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation of carbon-fibre microelectrode for extracellular recording of synaptic potentials.
    Kuras A; Gutmaniene N
    J Neurosci Methods; 1995 Nov; 62(1-2):207-12. PubMed ID: 8750105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The elgiloy microelectrode: fabrication techniques and characteristics.
    Ashford JW; Coburn KL; Fuster JM
    J Neurosci Methods; 1985 Sep; 14(4):247-52. PubMed ID: 4058056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon fibre microelectrodes.
    Armstrong-James M; Millar J
    J Neurosci Methods; 1979 Oct; 1(3):279-87. PubMed ID: 544972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing cardiac action potentials recorded with metal and glass microelectrodes.
    Omichi C; Lee MH; Ohara T; Naik AM; Wang NC; Karagueuzian HS; Chen PS
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H3113-7. PubMed ID: 11087269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Review of signal distortion through metal microelectrode recording circuits and filters.
    Nelson MJ; Pouget P; Nilsen EA; Patten CD; Schall JD
    J Neurosci Methods; 2008 Mar; 169(1):141-57. PubMed ID: 18242715
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-density neuronal networks cultured using patterned poly-l-lysine on microelectrode arrays.
    Jun SB; Hynd MR; Dowell-Mesfin N; Smith KL; Turner JN; Shain W; Kim SJ
    J Neurosci Methods; 2007 Mar; 160(2):317-26. PubMed ID: 17049614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unit activity, evoked potentials and slow waves in the rat hippocampus and olfactory bulb recorded with a 24-channel microelectrode.
    Kuperstein M; Eichenbaum H
    Neuroscience; 1985 Jul; 15(3):703-12. PubMed ID: 4069353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multimicroelectrode system composed of independent glass micropipettes with an eccentric tip structure for simultaneous intracellular recording.
    Saburi M; Yamada M; Shigematsu Y
    IEEE Trans Biomed Eng; 1992 Jun; 39(6):656-8. PubMed ID: 1601448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A durable chronic unit recording device with movable microelectrode.
    Fernández-Bueno C; Lombillo JM; Keene JJ
    J Neurosci Res; 1975; 1(5-6):399-403. PubMed ID: 818401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved methods for construction of carbon fibre electrodes for extracellular spike recording.
    Millar J; Pelling CW
    J Neurosci Methods; 2001 Sep; 110(1-2):1-8. PubMed ID: 11564518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of bipolar parallel electrodes for well-controlled microstimulation in a mouse hippocampal brain slice.
    Neagu B; Strominger NL; Carpenter DO
    J Neurosci Methods; 2005 Jun; 144(2):153-63. PubMed ID: 15910973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of flexible microelectrode arrays for recording cortical surface field potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Gureviciene I; Djupsund K; Tanila H; Lappalainen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3200-3. PubMed ID: 19163387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A reproducible technique for breaking glass micropipettes over a wide range of tip diameters.
    Briano RA
    J Neurosci Methods; 1983 Sep; 9(1):31-4. PubMed ID: 6632960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple and comprehensive method for the construction, repair and recycling of single and double tungsten microelectrodes.
    Li CY; Xu XZ; Tigwell D
    J Neurosci Methods; 1995 Apr; 57(2):217-20. PubMed ID: 7609585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method for manufacturing carbon-fibre microelectrodes.
    Math F; Marianneau G
    J Neurosci Methods; 1994 Jun; 52(2):149-51. PubMed ID: 7967718
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new technique for implanting a fine-wire microelectrode for chronic recording of unit activity from freely-moving mice.
    Oka JI; Imanishi M
    Neurosci Res; 2000 Jan; 36(1):93-6. PubMed ID: 10678536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.