BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10720935)

  • 1. Defects in processing and trafficking of the cystic fibrosis transmembrane conductance regulator.
    Skach WR
    Kidney Int; 2000 Mar; 57(3):825-31. PubMed ID: 10720935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of CFTR by the ubiquitin-proteasome pathway.
    Ward CL; Omura S; Kopito RR
    Cell; 1995 Oct; 83(1):121-7. PubMed ID: 7553863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary.
    Bebök Z; Mazzochi C; King SA; Hong JS; Sorscher EJ
    J Biol Chem; 1998 Nov; 273(45):29873-8. PubMed ID: 9792704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. COOH-terminal truncations promote proteasome-dependent degradation of mature cystic fibrosis transmembrane conductance regulator from post-Golgi compartments.
    Benharouga M; Haardt M; Kartner N; Lukacs GL
    J Cell Biol; 2001 May; 153(5):957-70. PubMed ID: 11381082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and degradation of the cystic fibrosis transmembrane conductance regulator in Saccharomyces cerevisiae.
    Kiser GL; Gentzsch M; Kloser AK; Balzi E; Wolf DH; Goffeau A; Riordan JR
    Arch Biochem Biophys; 2001 Jun; 390(2):195-205. PubMed ID: 11396922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Control of cystic fibrosis transmembrane conductance regulator membrane trafficking: not just from the endoplasmic reticulum to the Golgi.
    Farinha CM; Matos P; Amaral MD
    FEBS J; 2013 Sep; 280(18):4396-406. PubMed ID: 23773658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Traffic-independent function of the Sar1p/COPII machinery in proteasomal sorting of the cystic fibrosis transmembrane conductance regulator.
    Fu L; Sztul E
    J Cell Biol; 2003 Jan; 160(2):157-63. PubMed ID: 12538638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural cues involved in endoplasmic reticulum degradation of G85E and G91R mutant cystic fibrosis transmembrane conductance regulator.
    Xiong X; Bragin A; Widdicombe JH; Cohn J; Skach WR
    J Clin Invest; 1997 Sep; 100(5):1079-88. PubMed ID: 9276724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation.
    Meacham GC; Patterson C; Zhang W; Younger JM; Cyr DM
    Nat Cell Biol; 2001 Jan; 3(1):100-5. PubMed ID: 11146634
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing.
    Jensen TJ; Loo MA; Pind S; Williams DB; Goldberg AL; Riordan JR
    Cell; 1995 Oct; 83(1):129-35. PubMed ID: 7553864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator (CFTR) and renal function.
    Stanton BA
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):457-64. PubMed ID: 9261986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CFTR and chaperones: processing and degradation.
    Amaral MD
    J Mol Neurosci; 2004; 23(1-2):41-8. PubMed ID: 15126691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional cystic fibrosis transmembrane conductance regulator tagged with an epitope of the vesicular stomatis virus glycoprotein can be addressed to the apical domain of polarized cells.
    Costa de Beauregard MA; Edelman A; Chesnoy-Marchais D; Tondelier D; Lapillonne A; El Marjou F; Robine S; Louvard D
    Eur J Cell Biol; 2000 Nov; 79(11):795-802. PubMed ID: 11139142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing the basic defect in cystic fibrosis - one approach is not enough.
    Farinha CM; Matos P
    FEBS J; 2016 Jan; 283(2):246-64. PubMed ID: 26416076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The PEST sequence does not contribute to the stability of the cystic fibrosis transmembrane conductance regulator.
    Chen EY; Clarke DM
    BMC Biochem; 2002 Oct; 3():29. PubMed ID: 12361483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rescuing cystic fibrosis transmembrane conductance regulator (CFTR)-processing mutants by transcomplementation.
    Cormet-Boyaka E; Jablonsky M; Naren AP; Jackson PL; Muccio DD; Kirk KL
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8221-6. PubMed ID: 15141088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A principal role for the proteasome in endoplasmic reticulum-associated degradation of misfolded intracellular cystic fibrosis transmembrane conductance regulator.
    Gelman MS; Kannegaard ES; Kopito RR
    J Biol Chem; 2002 Apr; 277(14):11709-14. PubMed ID: 11812794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast.
    Zhang Y; Nijbroek G; Sullivan ML; McCracken AA; Watkins SC; Michaelis S; Brodsky JL
    Mol Biol Cell; 2001 May; 12(5):1303-14. PubMed ID: 11359923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis and degradation of CFTR.
    Kopito RR
    Physiol Rev; 1999 Jan; 79(1 Suppl):S167-73. PubMed ID: 9922380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defects in processing and trafficking of cystic fibrosis transmembrane conductance regulator.
    Kunzelmann K; Nitschke R
    Exp Nephrol; 2000; 8(6):332-42. PubMed ID: 11014930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.