BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10720935)

  • 21. Pharmacological induction of CFTR function in patients with cystic fibrosis: mutation-specific therapy.
    Kerem E
    Pediatr Pulmonol; 2005 Sep; 40(3):183-96. PubMed ID: 15880796
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence that endoplasmic reticulum (ER)-associated degradation of cystic fibrosis transmembrane conductance regulator is linked to retrograde translocation from the ER membrane.
    Xiong X; Chong E; Skach WR
    J Biol Chem; 1999 Jan; 274(5):2616-24. PubMed ID: 9915789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sodium 4-phenylbutyrate downregulates Hsc70: implications for intracellular trafficking of DeltaF508-CFTR.
    Rubenstein RC; Zeitlin PL
    Am J Physiol Cell Physiol; 2000 Feb; 278(2):C259-67. PubMed ID: 10666020
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of CFTR Biogenesis by the Proteostatic Network and Pharmacological Modulators.
    Estabrooks S; Brodsky JL
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31936842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biosynthesis of cystic fibrosis transmembrane conductance regulator.
    Pranke IM; Sermet-Gaudelus I
    Int J Biochem Cell Biol; 2014 Jul; 52():26-38. PubMed ID: 24685677
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Derlin-1 promotes the efficient degradation of the cystic fibrosis transmembrane conductance regulator (CFTR) and CFTR folding mutants.
    Sun F; Zhang R; Gong X; Geng X; Drain PF; Frizzell RA
    J Biol Chem; 2006 Dec; 281(48):36856-63. PubMed ID: 16954204
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redundancy of mammalian proteasome beta subunit function during endoplasmic reticulum associated degradation.
    Oberdorf J; Carlson EJ; Skach WR
    Biochemistry; 2001 Nov; 40(44):13397-405. PubMed ID: 11683650
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacologic restoration of delta F508 CFTR-mediated chloride current.
    Zeitlin PL
    Kidney Int; 2000 Mar; 57(3):832-7. PubMed ID: 10720936
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transient receptor potential canonical channel 6 links Ca2+ mishandling to cystic fibrosis transmembrane conductance regulator channel dysfunction in cystic fibrosis.
    Antigny F; Norez C; Dannhoffer L; Bertrand J; Raveau D; Corbi P; Jayle C; Becq F; Vandebrouck C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):83-90. PubMed ID: 20203293
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteasome-dependent pharmacological rescue of cystic fibrosis transmembrane conductance regulator revealed by mutation of glycine 622.
    Norez C; Bilan F; Kitzis A; Mettey Y; Becq F
    J Pharmacol Exp Ther; 2008 Apr; 325(1):89-99. PubMed ID: 18230692
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications.
    Vij N; Fang S; Zeitlin PL
    J Biol Chem; 2006 Jun; 281(25):17369-17378. PubMed ID: 16621797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Macromolecular interactions and ion transport in cystic fibrosis.
    Guggino WB; Banks-Schlegel SP
    Am J Respir Crit Care Med; 2004 Oct; 170(7):815-20. PubMed ID: 15447951
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines.
    Varga K; Jurkuvenaite A; Wakefield J; Hong JS; Guimbellot JS; Venglarik CJ; Niraj A; Mazur M; Sorscher EJ; Collawn JF; Bebök Z
    J Biol Chem; 2004 May; 279(21):22578-84. PubMed ID: 15066992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies.
    Belcher CN; Vij N
    Curr Mol Med; 2010 Feb; 10(1):82-94. PubMed ID: 20205681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Processing of mutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive.
    Denning GM; Anderson MP; Amara JF; Marshall J; Smith AE; Welsh MJ
    Nature; 1992 Aug; 358(6389):761-4. PubMed ID: 1380673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. VCP/p97 AAA-ATPase does not interact with the endogenous wild-type cystic fibrosis transmembrane conductance regulator.
    Goldstein RF; Niraj A; Sanderson TP; Wilson LS; Rab A; Kim H; Bebok Z; Collawn JF
    Am J Respir Cell Mol Biol; 2007 Jun; 36(6):706-14. PubMed ID: 17272822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism.
    Gelman MS; Kopito RR
    Methods Mol Biol; 2003; 232():27-37. PubMed ID: 12840537
    [No Abstract]   [Full Text] [Related]  

  • 39. S-nitrosoglutathione increases cystic fibrosis transmembrane regulator maturation.
    Zaman K; McPherson M; Vaughan J; Hunt J; Mendes F; Gaston B; Palmer LA
    Biochem Biophys Res Commun; 2001 Jun; 284(1):65-70. PubMed ID: 11374871
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macromolecular complexes of cystic fibrosis transmembrane conductance regulator and its interacting partners.
    Li C; Naren AP
    Pharmacol Ther; 2005 Nov; 108(2):208-23. PubMed ID: 15936089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.