These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 10720935)

  • 41. Co- and posttranslational translocation mechanisms direct cystic fibrosis transmembrane conductance regulator N terminus transmembrane assembly.
    Lu Y; Xiong X; Helm A; Kimani K; Bragin A; Skach WR
    J Biol Chem; 1998 Jan; 273(1):568-76. PubMed ID: 9417117
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The human DnaJ homologue (Hdj)-1/heat-shock protein (Hsp) 40 co-chaperone is required for the in vivo stabilization of the cystic fibrosis transmembrane conductance regulator by Hsp70.
    Farinha CM; Nogueira P; Mendes F; Penque D; Amaral MD
    Biochem J; 2002 Sep; 366(Pt 3):797-806. PubMed ID: 12069690
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome.
    Loo MA; Jensen TJ; Cui L; Hou Y; Chang XB; Riordan JR
    EMBO J; 1998 Dec; 17(23):6879-87. PubMed ID: 9843494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Revertant mutants G550E and 4RK rescue cystic fibrosis mutants in the first nucleotide-binding domain of CFTR by different mechanisms.
    Roxo-Rosa M; Xu Z; Schmidt A; Neto M; Cai Z; Soares CM; Sheppard DN; Amaral MD
    Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17891-6. PubMed ID: 17098864
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular dissection of the butyrate action revealed the involvement of mitogen-activated protein kinase in cystic fibrosis transmembrane conductance regulator biogenesis.
    Sugita M; Kongo H; Shiba Y
    Mol Pharmacol; 2004 Nov; 66(5):1248-59. PubMed ID: 15304546
    [TBL] [Abstract][Full Text] [Related]  

  • 46. S-nitrosylating agents: a novel class of compounds that increase cystic fibrosis transmembrane conductance regulator expression and maturation in epithelial cells.
    Zaman K; Carraro S; Doherty J; Henderson EM; Lendermon E; Liu L; Verghese G; Zigler M; Ross M; Park E; Palmer LA; Doctor A; Stamler JS; Gaston B
    Mol Pharmacol; 2006 Oct; 70(4):1435-42. PubMed ID: 16857740
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Topogenesis of cystic fibrosis transmembrane conductance regulator (CFTR): regulation by the amino terminal transmembrane sequences.
    Chen M; Zhang JT
    Biochemistry; 1999 Apr; 38(17):5471-7. PubMed ID: 10220334
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Post-translational disruption of the delta F508 cystic fibrosis transmembrane conductance regulator (CFTR)-molecular chaperone complex with geldanamycin stabilizes delta F508 CFTR in the rabbit reticulocyte lysate.
    Fuller W; Cuthbert AW
    J Biol Chem; 2000 Dec; 275(48):37462-8. PubMed ID: 10982807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy.
    Bangel-Ruland N; Tomczak K; Fernández Fernández E; Leier G; Leciejewski B; Rudolph C; Rosenecker J; Weber WM
    J Gene Med; 2013; 15(11-12):414-26. PubMed ID: 24123772
    [TBL] [Abstract][Full Text] [Related]  

  • 50. From the endoplasmic reticulum to the plasma membrane: mechanisms of CFTR folding and trafficking.
    Farinha CM; Canato S
    Cell Mol Life Sci; 2017 Jan; 74(1):39-55. PubMed ID: 27699454
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of the UPS in cystic fibrosis.
    Turnbull EL; Rosser MF; Cyr DM
    BMC Biochem; 2007 Nov; 8 Suppl 1(Suppl 1):S11. PubMed ID: 18047735
    [TBL] [Abstract][Full Text] [Related]  

  • 52. FK506 binding protein 8 peptidylprolyl isomerase activity manages a late stage of cystic fibrosis transmembrane conductance regulator (CFTR) folding and stability.
    Hutt DM; Roth DM; Chalfant MA; Youker RT; Matteson J; Brodsky JL; Balch WE
    J Biol Chem; 2012 Jun; 287(26):21914-25. PubMed ID: 22474283
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Aggresomes: a cellular response to misfolded proteins.
    Johnston JA; Ward CL; Kopito RR
    J Cell Biol; 1998 Dec; 143(7):1883-98. PubMed ID: 9864362
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An energy-dependent maturation step is required for release of the cystic fibrosis transmembrane conductance regulator from early endoplasmic reticulum biosynthetic machinery.
    Oberdorf J; Pitonzo D; Skach WR
    J Biol Chem; 2005 Nov; 280(46):38193-202. PubMed ID: 16166089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cystic fibrosis transmembrane regulator missing the first four transmembrane segments increases wild type and DeltaF508 processing.
    Cebotaru L; Vij N; Ciobanu I; Wright J; Flotte T; Guggino WB
    J Biol Chem; 2008 Aug; 283(32):21926-33. PubMed ID: 18508776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cotranslational ubiquitination of cystic fibrosis transmembrane conductance regulator in vitro.
    Sato S; Ward CL; Kopito RR
    J Biol Chem; 1998 Mar; 273(13):7189-92. PubMed ID: 9516408
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cystic fibrosis transmembrane conductance regulator as a model substrate to study endoplasmic reticulum protein quality control in mammalian cells.
    Younger JM; Fan CY; Chen L; Rosser MF; Patterson C; Cyr DM
    Methods Mol Biol; 2005; 301():293-303. PubMed ID: 15917641
    [TBL] [Abstract][Full Text] [Related]  

  • 58. N-Alpha-Acetyltransferases and Regulation of CFTR Expression.
    Vetter AJ; Karamyshev AL; Patrick AE; Hudson H; Thomas PJ
    PLoS One; 2016; 11(5):e0155430. PubMed ID: 27182737
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Combination of Correctors Rescues CFTR Transmembrane-Domain Mutants by Mitigating their Interactions with Proteostasis.
    Lopes-Pacheco M; Boinot C; Sabirzhanova I; Rapino D; Cebotaru L
    Cell Physiol Biochem; 2017; 41(6):2194-2210. PubMed ID: 28448979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The multiple ubiquitination mechanisms in CFTR peripheral quality control.
    Taniguchi S; Fukuda R; Okiyoneda T
    Biochem Soc Trans; 2023 Jun; 51(3):1297-1306. PubMed ID: 37140364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.