BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10721621)

  • 1. Applications of SPICE for modeling miniaturized biomedical sensor systems.
    Mundt CW; Nagle HT
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):149-54. PubMed ID: 10721621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the neuron-microtransducer junction: from extracellular to patch recording.
    Grattarola M; Martinoia S
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):35-41. PubMed ID: 8468074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrode systems for measuring cardiac impedances using optical transmembrane potential sensors and interstitial electrodes--theoretical design.
    Barr RC; Plonsey R
    IEEE Trans Biomed Eng; 2003 Aug; 50(8):925-34. PubMed ID: 12892320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC frequency characteristics of coplanar impedance sensors as design parameters.
    Hong J; Yoon DS; Kim SK; Kim TS; Kim S; Pak EY; No K
    Lab Chip; 2005 Mar; 5(3):270-9. PubMed ID: 15726203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wireless implantable multichannel microstimulating system-on-a-chip with modular architecture.
    Ghovanloo M; Najafi K
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):449-57. PubMed ID: 17894278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biopotential fiber sensor.
    Lobodzinski SM; Laks MM
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S41-6. PubMed ID: 17015067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated wireless neural interface based on the Utah electrode array.
    Kim S; Bhandari R; Klein M; Negi S; Rieth L; Tathireddy P; Toepper M; Oppermann H; Solzbacher F
    Biomed Microdevices; 2009 Apr; 11(2):453-66. PubMed ID: 19067174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, in vitro and in vivo assessment of a multi-channel sieve electrode with integrated multiplexer.
    Ramachandran A; Schuettler M; Lago N; Doerge T; Koch KP; Navarro X; Hoffmann KP; Stieglitz T
    J Neural Eng; 2006 Jun; 3(2):114-24. PubMed ID: 16705267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated electrochemical sensor array for on-line monitoring of yeast fermentations.
    Krommenhoek EE; Gardeniers JG; Bomer JG; Li X; Ottens M; van Dedem GW; Van Leeuwen M; van Gulik WM; van der Wielen LA; Heijnen JJ; van den Berg AA
    Anal Chem; 2007 Aug; 79(15):5567-73. PubMed ID: 17585833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A data acquisition system for induced current electrical impedance tomography].
    Xiang H; Dong X; Qin M; You F; Shi X; Fu F; Liu R; Ma J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Aug; 22(4):819-23. PubMed ID: 16156281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical properties of retinal-electrode interface.
    Shah S; Hines A; Zhou D; Greenberg RJ; Humayun MS; Weiland JD
    J Neural Eng; 2007 Mar; 4(1):S24-9. PubMed ID: 17325413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.
    Van Helleputte N; Kim S; Kim H; Kim JP; Van Hoof C; Yazicioglu RF
    IEEE Trans Biomed Circuits Syst; 2012 Dec; 6(6):552-61. PubMed ID: 23853256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear electrode arrays for stimulation and recording within cardiac tissue space constants.
    Pollard AE; Ellis CD; Smith WM
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1408-14. PubMed ID: 18390332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A miniaturized neuroprosthesis suitable for implantation into the brain.
    Mojarradi M; Binkley D; Blalock B; Andersen R; Ulshoefer N; Johnson T; Del Castillo L
    IEEE Trans Neural Syst Rehabil Eng; 2003 Mar; 11(1):38-42. PubMed ID: 12797724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance switching characteristics of HfO2 film with electrode for resistance change random access memory.
    Park IS; Lee JH; Lee S; Ahn J
    J Nanosci Nanotechnol; 2007 Nov; 7(11):4139-42. PubMed ID: 18047136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A low-cost telemetry system suitable for measuring mouse biopotentials.
    Lin DC; Bucher BP; Davis HP; Sprunger LK
    Med Eng Phys; 2008 Mar; 30(2):199-205. PubMed ID: 17403611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A programmable microsystem using system-on-chip for real-time biotelemetry.
    Wang L; Johannessen EA; Hammond PA; Cui L; Reid SW; Cooper JM; Cumming DR
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1251-60. PubMed ID: 16041988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.