These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 10721627)

  • 1. Experimental and numerical determination of SAR distributions within culture flasks in a dielectric loaded radial transmission line.
    Pickard WF; Straube WL; Moros EG
    IEEE Trans Biomed Eng; 2000 Feb; 47(2):202-8. PubMed ID: 10721627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-difference time-domain analysis of a complete transverse electromagnetic cell loaded with liquid biological media in culture dishes.
    Popović M; Hagness SC; Taflove A
    IEEE Trans Biomed Eng; 1998 Aug; 45(8):1067-76. PubMed ID: 9691582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A memory efficient method of calculating specific absorption rate in CW FDTD simulations.
    Furse CM; Gandhi OP
    IEEE Trans Biomed Eng; 1996 May; 43(5):558-60. PubMed ID: 8849469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of increase in dielectric values on specific absorption rate (SAR) in eye and head tissues following 900, 1800 and 2450 MHz radio frequency (RF) exposure.
    Keshvari J; Keshvari R; Lang S
    Phys Med Biol; 2006 Mar; 51(6):1463-77. PubMed ID: 16510956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical dosimetry for cells under millimetre-wave irradiation using Petri dish exposure set-ups.
    Zhao JX
    Phys Med Biol; 2005 Jul; 50(14):3405-21. PubMed ID: 16177518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FDTD analysis of a gigahertz TEM cell for ultra-wideband pulse exposure studies of biological specimens.
    Ji Z; Hagness SC; Booske JH; Mathur S; Meltz ML
    IEEE Trans Biomed Eng; 2006 May; 53(5):780-9. PubMed ID: 16686400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analysis of millimeter-wave dosimetry in cell culture dishes with finite-difference time-domain technique].
    Zhao J; Lu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Apr; 22(2):327-30. PubMed ID: 15884546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial analysis of SAR from a cell phone inside a vehicle by numerical computation.
    Anzaldi G; Silva F; Fernández M; Quílez M; Riu PJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):921-30. PubMed ID: 17518290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical modeling and dosimetry of the 35 mm Petri dish under 46 GHz millimeter wave exposure.
    Zhao J; Wei Z
    Bioelectromagnetics; 2005 Sep; 26(6):481-8. PubMed ID: 15931681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large scale in vitro experiment system for 2 GHz exposure.
    Iyama T; Ebara H; Tarusawa Y; Uebayashi S; Sekijima M; Nojima T; Miyakoshi J
    Bioelectromagnetics; 2004 Dec; 25(8):599-606. PubMed ID: 15515034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FDTD calculation of whole-body average SAR in adult and child models for frequencies from 30 MHz to 3 GHz.
    Wang J; Fujiwara O; Kodera S; Watanabe S
    Phys Med Biol; 2006 Sep; 51(17):4119-27. PubMed ID: 16912372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz.
    Zamorano M; Torres-Silva H
    Phys Med Biol; 2006 Apr; 51(7):1661-72. PubMed ID: 16552096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the meniscus at the solid/liquid interface on the SAR distribution in Petri dishes and flasks.
    Schuderer J; Kuster N
    Bioelectromagnetics; 2003 Feb; 24(2):103-8. PubMed ID: 12524676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reevaluation and improved design of the TEM cell in vitro exposure unit for replication studies.
    Nikoloski N; Fröhlich J; Samaras T; Schuderer J; Kuster N
    Bioelectromagnetics; 2005 Apr; 26(3):215-24. PubMed ID: 15768424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of convolutional PML absorbing boundary conditions in finite-difference time-domain SAR calculations.
    Laakso I; Ilvonen S; Uusitupa T
    Phys Med Biol; 2007 Dec; 52(23):7183-92. PubMed ID: 18030001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.
    Hirata A; Asano T; Fujiwara O
    Phys Med Biol; 2007 Aug; 52(16):5013-23. PubMed ID: 17671350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patient safety concept for multichannel transmit coils.
    Seifert F; Wübbeler G; Junge S; Ittermann B; Rinneberg H
    J Magn Reson Imaging; 2007 Nov; 26(5):1315-21. PubMed ID: 17969165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability.
    Mashevich M; Folkman D; Kesar A; Barbul A; Korenstein R; Jerby E; Avivi L
    Bioelectromagnetics; 2003 Feb; 24(2):82-90. PubMed ID: 12524674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI.
    Dimbylow P
    Phys Med Biol; 2005 Sep; 50(17):4053-63. PubMed ID: 16177529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAR and efficiency evaluation of a 900 MHz waveguide chamber for cell exposure.
    De Prisco G; d'Ambrosio G; Calabrese ML; Massa R; Juutilainen J
    Bioelectromagnetics; 2008 Sep; 29(6):429-38. PubMed ID: 18381593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.