BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 10722164)

  • 1. An investigation of antibody acyl hydrolysis catalysis using a large set of related haptens.
    Odenbaugh AL; Helms ED; Iverson BL
    Bioorg Med Chem; 2000 Feb; 8(2):413-26. PubMed ID: 10722164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of catalytic antibody repertoire in autoimmune mice.
    Nishi Y
    J Immunol Methods; 2002 Nov; 269(1-2):213-33. PubMed ID: 12379363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient and selective p-nitrophenyl-ester-hydrolyzing antibodies elicited by a p-nitrobenzyl phosphonate hapten.
    Tawfik DS; Lindner AB; Chap R; Eshhar Z; Green BS
    Eur J Biochem; 1997 Mar; 244(2):619-26. PubMed ID: 9119032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyclonal antibody catalytic variability.
    Stephens DB; Thomas RE; Stanton JF; Iverson BL
    Biochem J; 1998 May; 332 ( Pt 1)(Pt 1):127-34. PubMed ID: 9576860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence that the mechanism of antibody-catalysed hydrolysis of arylcarbamates can be determined by the structure of the immunogen used to elicit the catalytic antibody.
    Boucher G; Said B; Ostler EL; Resmini M; Brocklehurst K; Gallacher G
    Biochem J; 2007 Feb; 401(3):721-6. PubMed ID: 17020536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement in hydrolytic antibody activity by change in haptenic structure from phosphate to phosphonate with retention of a common leaving-group determinant: evidence for the 'flexibility' hypothesis.
    Gul S; Sonkaria S; Pinitglang S; Florez-Alvarez J; Hussain S; Thomas EW; Ostler EL; Gallacher G; Resmini M; Brocklehurst K
    Biochem J; 2003 Dec; 376(Pt 3):813-21. PubMed ID: 12946271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic antibody activity elicited by active immunisation. Evidence for natural variation involving preferential stabilization of the transition state.
    Gallacher G; Jackson CS; Searcey M; Goel R; Mellor GW; Smith CZ; Brocklehurst K
    Eur J Biochem; 1993 May; 214(1):197-207. PubMed ID: 8508792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of flexible and constrained haptens in eliciting antibody catalysts for paraoxon hydrolysis.
    Spivak DA; Hoffman TZ; Moore AH; Taylor MJ; Janda KD
    Bioorg Med Chem; 1999 Jun; 7(6):1145-50. PubMed ID: 10428386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of hapten binding and catalytic determinants in a family of catalytic antibodies.
    Ulrich HD; Schultz PG
    J Mol Biol; 1998 Jan; 275(1):95-111. PubMed ID: 9451442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural convergence in the active sites of a family of catalytic antibodies.
    Charbonnier JB; Golinelli-Pimpaneau B; Gigant B; Tawfik DS; Chap R; Schindler DG; Kim SH; Green BS; Eshhar Z; Knossow M
    Science; 1997 Feb; 275(5303):1140-2. PubMed ID: 9027317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmenting the efficacy of anti-cocaine catalytic antibodies through chimeric hapten design and combinatorial vaccination.
    Wenthur CJ; Cai X; Ellis BA; Janda KD
    Bioorg Med Chem Lett; 2017 Aug; 27(16):3666-3668. PubMed ID: 28709828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocaine catalytic antibodies: the primary importance of linker effects.
    Matsushita M; Hoffman TZ; Ashley JA; Zhou B; Wirsching P; Janda KD
    Bioorg Med Chem Lett; 2001 Jan; 11(2):87-90. PubMed ID: 11206477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hapten design for the generation of catalytic antibodies.
    Thomas NR
    Appl Biochem Biotechnol; 1994; 47(2-3):345-72. PubMed ID: 7944348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspects of antibody-catalyzed primary amide hydrolysis.
    Titmas RC; Angeles TS; Sugasawara R; Aman N; Darsley MJ; Blackburn G; Martin MT
    Appl Biochem Biotechnol; 1994; 47(2-3):277-90; discussion 291-2. PubMed ID: 7944343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpectedly high occurrence of catalytic antibodies in MRL/lpr and SJL mice immunized with a transition-state analog: is there a linkage to autoimmunity?
    Tawfik DS; Chap R; Green BS; Sela M; Eshhar Z
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2145-9. PubMed ID: 7892238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bait and switch hapten strategy generates catalytic antibodies for phosphodiester hydrolysis.
    Wentworth P; Liu Y; Wentworth AD; Fan P; Foley MJ; Janda KD
    Proc Natl Acad Sci U S A; 1998 May; 95(11):5971-5. PubMed ID: 9600901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the complex of a catalytic antibody Fab fragment with a transition state analog: structural similarities in esterase-like catalytic antibodies.
    Charbonnier JB; Carpenter E; Gigant B; Golinelli-Pimpaneau B; Eshhar Z; Green BS; Knossow M
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11721-5. PubMed ID: 8524836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.