BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10722166)

  • 1. The reactivity of phenolic and non-phenolic residual kraft lignin model compounds with Mn(II)-peroxidase from Lentinula edodes.
    Crestini C; D'Annibale A; Sermanni GG; Saladino R
    Bioorg Med Chem; 2000 Feb; 8(2):433-8. PubMed ID: 10722166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The early oxidative biodegradation steps of residual kraft lignin models with laccase.
    Crestini C; Argyropoulos DS
    Bioorg Med Chem; 1998 Nov; 6(11):2161-9. PubMed ID: 9881106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural modifications induced during biodegradation of wheat lignin by Lentinula edodes.
    Crestini C; Sermanni GG; Argyropoulos DS
    Bioorg Med Chem; 1998 Jul; 6(7):967-73. PubMed ID: 9730232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers.
    Banci L; Ciofi-Baffoni S; Tien M
    Biochemistry; 1999 Mar; 38(10):3205-10. PubMed ID: 10074376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative degradation of non-phenolic lignin during lipid peroxidation by fungal manganese peroxidase.
    Bao W; Fukushima Y; Jensen KA; Moen MA; Hammel KE
    FEBS Lett; 1994 Nov; 354(3):297-300. PubMed ID: 7957943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenolic mediators enhance the manganese peroxidase catalyzed oxidation of recalcitrant lignin model compounds and synthetic lignin.
    Nousiainen P; Kontro J; Manner H; Hatakka A; Sipilä J
    Fungal Genet Biol; 2014 Nov; 72():137-149. PubMed ID: 25108071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do the extracellular enzymes cellobiose dehydrogenase and manganese peroxidase form a pathway in lignin biodegradation?
    Hildén L; Johansson G; Pettersson G; Li J; Ljungquist P; Henriksson G
    FEBS Lett; 2000 Jul; 477(1-2):79-83. PubMed ID: 10899314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein engineering of Pseudomonas fluorescens peroxidase Dyp1B for oxidation of phenolic and polymeric lignin substrates.
    Rahman Pour R; Ehibhatiomhan A; Huang Y; Ashley B; Rashid GM; Mendel-Williams S; Bugg TDH
    Enzyme Microb Technol; 2019 Apr; 123():21-29. PubMed ID: 30686347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivating effect of phenolic unit structures on the biodegradation of lignin by lignin peroxidase from Phanerochaete chrysosporium.
    Thanh Mai Pham L; Eom MH; Kim YH
    Enzyme Microb Technol; 2014; 61-62():48-54. PubMed ID: 24910336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extraction of manganese peroxidase produced by Lentinula edodes.
    Silva EM; Martins SF; Milagres AM
    Bioresour Technol; 2008 May; 99(7):2471-5. PubMed ID: 17583498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic modification of kraft lignin through oxidative coupling with water-soluble phenols.
    Lund M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2001 Jun; 55(6):699-703. PubMed ID: 11525617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of a non-phenolic lignin model compound by two
    Qin X; Sun X; Huang H; Bai Y; Wang Y; Luo H; Yao B; Zhang X; Su X
    Biotechnol Biofuels; 2017; 10():103. PubMed ID: 28439296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linking Enzymatic Oxidative Degradation of Lignin to Organics Detoxification.
    Wang X; Yao B; Su X
    Int J Mol Sci; 2018 Oct; 19(11):. PubMed ID: 30373305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5: Oxidation of Mn(II) and polymeric lignin by Dyp1B.
    Rahmanpour R; Bugg TD
    Arch Biochem Biophys; 2015 May; 574():93-8. PubMed ID: 25558792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into lignin degradation and its potential industrial applications.
    Abdel-Hamid AM; Solbiati JO; Cann IK
    Adv Appl Microbiol; 2013; 82():1-28. PubMed ID: 23415151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of veratryl alcohol and nonionic surfactant in the oxidation of phenolic compounds by lignin peroxidase.
    Huang X; Wang D; Liu C; Hu M; Qu Y; Gao P
    Biochem Biophys Res Commun; 2003 Nov; 311(2):491-4. PubMed ID: 14592442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin Promotes Mycelial Growth and Accumulation of Polyphenols and Ergosterol in
    Wu F; Wang H; Chen Q; Pang X; Jing H; Yin L; Zhang X
    J Fungi (Basel); 2023 Feb; 9(2):. PubMed ID: 36836351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biomimetic oxidation of beta-1, beta-0-4, beta-5, and biphenyl lignin model compounds by synthetic iron porphyrins.
    Cui F; Dolphin D
    Bioorg Med Chem; 1994 Jul; 2(7):735-42. PubMed ID: 7858983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.